Home
đ Introduction¶
PaddleX 3.0 is a low-code development tool for AI models built on the PaddlePaddle framework. It integrates numerousready-to-use pre-trained models, enablingfull-process developmentfrom model training to inference, supportinga variety of mainstream hardware both domestic and international, and aiding AI developers in industrial practice.
đ ī¸ Installation¶
Warning
Before installing PaddleX, please ensure that you have a basic Python runtime environment (Note: Currently supports Python 3.8 to Python 3.12). The PaddleX 3.0-rc0 version depends on PaddlePaddle version 3.0.0rc0 and above.
Installing PaddlePaddle¶
Tip
There is no need to pay attention to the CUDA version on the physical machine; just focus on the GPU driver version. For more information on PaddlePaddle Wheel versions, please refer to the PaddlePaddle Official Website.
Installing PaddleX¶
â For more installation methods, please refer to the PaddleX Installation Guide
đģ Command Line Usage¶
A single command can quickly experience the pipeline effect, with a unified command line format as follows:
Each pipeline in PaddleX corresponds to specific parameters. You can find detailed parameter descriptions in the respective pipeline documentation. Each pipeline requires three essential parameters:
pipeline
: The name of the pipeline or the path to the pipeline configuration file.input
: The local path, directory, or URL of the input file to be processed (e.g., an image).device
: The hardware device and its index to be used (e.g.,gpu:0
indicates using the first GPU). You can also choose to use NPU (npu:0
), XPU (xpu:0
), CPU (cpu
), etc.
OCR-related Pipelines CLI
paddlex --pipeline OCR \
--input https://paddle-model-ecology.bj.bcebos.com/paddlex/imgs/demo_image/general_ocr_002.png \
--use_doc_orientation_classify False \
--use_doc_unwarping False \
--use_textline_orientation False \
--save_path ./output \
--device gpu:0
What's the result
{'res': {'input_path': 'general_ocr_002.png', 'page_index': None, 'model_settings': {'use_doc_preprocessor': False, 'use_textline_orientation': False}, 'doc_preprocessor_res': {'input_path': None, 'model_settings': {'use_doc_orientation_classify': True, 'use_doc_unwarping': False}, 'angle': 0},'dt_polys': [array([[ 3, 10],[82, 10],[82, 33],[ 3, 33]], dtype=int16), ...], 'text_det_params': {'limit_side_len': 960, 'limit_type': 'max', 'thresh': 0.3, 'box_thresh': 0.6, 'unclip_ratio': 2.0}, 'text_type': 'general', 'textline_orientation_angles': [-1, ...], 'text_rec_score_thresh': 0.0, 'rec_texts': ['www.99*', ...], 'rec_scores': [0.8980069160461426, ...], 'rec_polys': [array([[ 3, 10],[82, 10],[82, 33],[ 3, 33]], dtype=int16), ...], 'rec_boxes': array([[ 3, 10, 82, 33], ...], dtype=int16)}}
paddlex --pipeline table_recognition \
--input https://paddle-model-ecology.bj.bcebos.com/paddlex/imgs/demo_image/table_recognition.jpg \
--save_path ./output \
--device gpu:0
What's the result
{'res': {'input_path': '/root/.paddlex/predict_input/table_recognition.jpg', 'page_index': None, 'model_settings': {'use_doc_preprocessor': False, 'use_layout_detection': True, 'use_ocr_model': True}, 'layout_det_res': {'input_path': None, 'page_index': None, 'boxes': [{'cls_id': 8, 'label': 'table', 'score': 0.9730289578437805, 'coordinate': [0.77032924, 0.0992564, 550.78864, 127.53717]}]}, 'overall_ocr_res': {'input_path': None, 'page_index': None, 'model_settings': {'use_doc_preprocessor': False, 'use_textline_orientation': False}, 'dt_polys': array([[[234, 6],
...,
[234, 25]],
...,
[[448, 101],
...,
[448, 121]]], dtype=int16), 'text_det_params': {'limit_side_len': 960, 'limit_type': 'max', 'thresh': 0.3, 'box_thresh': 0.6, 'unclip_ratio': 2.0}, 'text_type': 'general', 'textline_orientation_angles': array([-1, ..., -1]), 'text_rec_score_thresh': 0, 'rec_texts': ['CRuncover', 'Dres', 'čŋįģåˇĨäŊ3', 'ååēæĨæžå¨įŊä¸', 'æ˛Ąæŗ', 'æąãæ´æąįå
Ģ大', 'Abstr', 'rSrivi', '$709.', 'cludingGiv', '2.72', 'Ingcubic', '$744.78'], 'rec_scores': array([0.99612021, ..., 0.99815977]), 'rec_polys': array([[[234, 6],
...,
[234, 25]],
...,
[[448, 101],
...,
[448, 121]]], dtype=int16), 'rec_boxes': array([[234, ..., 25],
...,
[448, ..., 121]], dtype=int16)}, 'table_res_list': [{'cell_box_list': array([[ 3.77032924, ..., 27.0992564 ],
...,
[403.77032924, ..., 125.0992564 ]]), 'pred_html': '<html><body><table><tr><td colspan="4">CRuncover</td></tr><tr><td>Dres</td><td>čŋįģåˇĨäŊ3</td><td>ååēæĨæžå¨įŊä¸ æ˛Ąæŗ</td><td>æąãæ´æąįå
Ģ大</td></tr><tr><td>Abstr</td><td></td><td>rSrivi</td><td>$709.</td></tr><tr><td>cludingGiv</td><td>2.72</td><td>Ingcubic</td><td>$744.78</td></tr></table></body></html>', 'table_ocr_pred': {'rec_polys': array([[[234, 6],
...,
[234, 25]],
...,
[[448, 101],
...,
[448, 121]]], dtype=int16), 'rec_texts': ['CRuncover', 'Dres', 'čŋįģåˇĨäŊ3', 'ååēæĨæžå¨įŊä¸', 'æ˛Ąæŗ', 'æąãæ´æąįå
Ģ大', 'Abstr', 'rSrivi', '$709.', 'cludingGiv', '2.72', 'Ingcubic', '$744.78'], 'rec_scores': array([0.99612021, ..., 0.99815977]), 'rec_boxes': array([[234, ..., 25],
...,
[448, ..., 121]], dtype=int16)}}]}}
paddlex --pipeline table_recognition_v2 \
--use_doc_orientation_classify=False \
--use_doc_unwarping=False \
--input https://paddle-model-ecology.bj.bcebos.com/paddlex/imgs/demo_image/table_recognition_v2.jpg \
--save_path ./output \
--device gpu:0
What's the result
{'res': {'input_path': 'table_recognition_v2.jpg', 'page_index': None, 'model_settings': {'use_doc_preprocessor': False, 'use_layout_detection': True, 'use_ocr_model': True}, 'layout_det_res': {'input_path': None, 'page_index': None, 'boxes': [{'cls_id': 8, 'label': 'table', 'score': 0.8676343560218811, 'coordinate': [0.017525911, 0.4164088, 1281.396, 585.3947]}]}, 'overall_ocr_res': {'input_path': None, 'page_index': None, 'model_settings': {'use_doc_preprocessor': False, 'use_textline_orientation': False}, 'dt_polys': array([[[ 9, 21],
...,
[ 9, 59]],
...,
[[1046, 536],
...,
[1046, 573]]], dtype=int16), 'text_det_params': {'limit_side_len': 960, 'limit_type': 'max', 'thresh': 0.3, 'box_thresh': 0.4, 'unclip_ratio': 2.0}, 'text_type': 'general', 'textline_orientation_angles': array([-1, ..., -1]), 'text_rec_score_thresh': 0, 'rec_texts': ['é¨é¨', 'æĨéäēē', 'æĨéäēįą', 'æšåäēēīŧ', 'åæŽ', 'åŧ ', 'å莥ééĸ', 'å
', 'čŊĻč´šįĨ¨', 'å
ļ', 'įĢčŊĻč´šįĨ¨', 'éŖæēįĨ¨', 'ä¸', 'æ
äŊåŽŋč´š', 'å
ļäģ', 'čĄĨč´´'], 'rec_scores': array([0.9995774 , ..., 0.99309814]), 'rec_polys': array([[[ 9, 21],
...,
[ 9, 59]],
...,
[[1046, 536],
...,
[1046, 573]]], dtype=int16), 'rec_boxes': array([[ 9, ..., 59],
...,
[1046, ..., 573]], dtype=int16)}, 'table_res_list': [{'cell_box_list': [array([1.75259113e-02, ..., 7.36299403e+01]), array([104.53061795, ..., 73.56454113]), array([319.99210477, ..., 73.57040814]), array([424.35038114, ..., 73.77019909]), array([580.89661527, ..., 73.57633618]), array([722.90680814, ..., 73.23406628]), array([983.61304593, ..., 137.50552014]), array([1.75259113e-02, ..., 5.85416409e+02]), array([994., ..., 190.]), array([1245., ..., 186.]), array([211.09584928, ..., 257.55050305]), array([984.40485501, ..., 331.61166027]), array([1038.28327298, ..., 329.74648693]), array([1053., ..., 379.]), array([1038.92304349, ..., 585.03628185]), array([1000., ..., 444.]), array([1.75259113e-02, ..., 5.85416409e+02])], 'pred_html': '<html><body><table><tbody><tr><td>é¨é¨</td><td></td><td>æĨéäēē</td><td></td><td>æĨéäēįą</td><td></td><td colspan="2">æšåäēēīŧ åæŽ åŧ </td></tr><tr><td colspan="6" rowspan="8"></td><td colspan="2"></td></tr><tr><td colspan="2">å莥ééĸ</td></tr><tr><td rowspan="6"></td><td></td></tr><tr><td></td></tr><tr><td>éŖæēįĨ¨</td></tr><tr><td>æ
äŊåŽŋč´š å
ļäģ čĄĨč´´</td></tr><tr><td>ä¸</td></tr><tr><td></td></tr></tbody></table></body></html>', 'table_ocr_pred': {'rec_polys': array([[[ 9, 21],
...,
[ 9, 59]],
...,
[[1046, 536],
...,
[1046, 573]]], dtype=int16), 'rec_texts': ['é¨é¨', 'æĨéäēē', 'æĨéäēįą', 'æšåäēēīŧ', 'åæŽ', 'åŧ ', 'å莥ééĸ', 'å
', 'čŊĻč´šįĨ¨', 'å
ļ', 'įĢčŊĻč´šįĨ¨', 'éŖæēįĨ¨', 'ä¸', 'æ
äŊåŽŋč´š', 'å
ļäģ', 'čĄĨč´´'], 'rec_scores': array([0.9995774 , ..., 0.99309814]), 'rec_boxes': array([[ 9, ..., 59],
...,
[1046, ..., 573]], dtype=int16)}}]}}
paddlex --pipeline layout_parsing \
--input https://paddle-model-ecology.bj.bcebos.com/paddlex/imgs/demo_image/layout_parsing_demo.png \
--use_doc_orientation_classify False \
--use_doc_unwarping False \
--use_textline_orientation False \
--save_path ./output \
--device gpu:0
What's the result
```bash {'res': {'input_path': 'layout_parsing_demo.png', 'page_index': None, 'model_settings': {'use_doc_preprocessor': False, 'use_general_ocr': True, 'use_seal_recognition': True, 'use_table_recognition': True, 'use_formula_recognition': False}, 'parsing_res_list': [{'block_bbox': [133.36868, 40.128025, 1383.7496, 123.51852], 'block_label': 'text', 'block_content': 'åŠååæšäē¤åž\næåģēåč°æĄĨæĸ'}, {'block_bbox': [587.4096, 160.58267, 927.6319, 179.2817], 'block_label': 'figure_title', 'block_content': 'æŦæĨ莰č æ˛å°æäģģåŊĻéģåšæ'}, {'block_bbox': [773.8337, 200.6484, 1505.5646, 687.1228], 'block_label': 'image', 'block_content': ''}, {'block_bbox': [390.39642, 201.85085, 741.43414, 292.60092], 'block_label': 'text', 'block_content': 'åįĢįšéäēéĢįæč˛ä¸į įŠļéĸåäŊåģēįĢīŧåŧ\n莞äēä¸åŊč¯č¨č¯žį¨åä¸åŊæåč¯žį¨īŧæŗ¨ååĻ\nį2ä¸äŊäēēæŦĄã10äŊåš´æĨīŧåįšåéĸåˇ˛æä¸ē\nåŊå°æ°äŧäēč§Ŗä¸åŊįä¸æįĒåŖã'}, {'block_bbox': [9.714512, 202.68811, 359.62323, 340.3127], 'block_label': 'text', 'block_content': 'čēĢįä¸åŊäŧ įģæ°ææčŖ įåįĢįšéäēé\nåš´äžæŦĄįģå°čĄ¨æŧä¸åŊæ°æčãį°äģŖčãæåč\nįīŧæŧåĻįčå§ŋčĩĸåžį°åēč§äŧéĩéĩæåŖ°ãčŋ\næ¯æĨååįĢįšéäēéĢįæč˛ä¸į įŠļéĸåååĻ\néĸ(äģĨä¸įŽį§°"åįšåéĸ"丞åâåčŋæ°åš´"ä¸åŊ\næčæ¯čĩįåēæ¯ã'}, {'block_bbox': [390.74124, 298.42255, 740.8009, 436.79193], 'block_label': 'text', 'block_content': 'éģé¸ŖéŖ襨į¤ēīŧéįæĨåĻäš ä¸æįäēēæĨį\nåĸå¤īŧéŋæ¯éŠŦæ大åĻæåĻįšåˇ˛éžäģĨæģĄčļŗæåĻ\néčĻã2024åš´4æīŧįąä¸äŧčééåĸæåąå\nåˇčˇ¯æĄĨæŋåģēįåéĸæåĻæĨŧ饚įŽå¨éŋæ¯éŠŦæåŧ\nåˇĨåģē莞īŧéĸ莥äģåš´ä¸ååš´åŗģåˇĨīŧåģēæåå°ä¸ēå\nįšåéĸæäžå ¨æ°įååĻåēå°ã'}, {'block_bbox': [10.579921, 346.26508, 359.13733, 436.17682], 'block_label': 'text', 'block_content': 'ä¸åŊååįĢįšéäēäŧ įģåč°æˇąåãčŋåš´\næĨ,å¨éĢč´¨éå ąåģēâä¸å¸Ļä¸čˇ¯"æĄæļä¸īŧä¸å两\nåŊäēēæäē¤æĩä¸ææˇąåīŧäēåŠåäŊįæ°æåēįĄ\næĨįæˇąåã'}, {'block_bbox': [410.51892, 457.0816, 722.768, 516.78217], 'block_label': 'text', 'block_content': 'âå¨ä¸åŊåĻäš įįģå\n莊æįå°æ´åšŋéįä¸įâ'}, {'block_bbox': [30.334734, 457.53757, 341.92758, 516.81995], 'block_label': 'paragraph_title', 'block_content': 'âåĻåĨŊä¸æīŧæäģŦį\næĒæĨä¸æ¯æĸĻ"'}, {'block_bbox': [390.89084, 538.1777, 742.1934, 604.6777], 'block_label': 'text', 'block_content': 'å¤åš´æĨīŧåįĢįšéäēåšŋ大čĩ´åįåĻįå\nåščŽäēēåį§¯ææčēĢåŊåŽļåģē莞īŧæä¸ēåŠåč¯ĨåŊ\nååąįäēēæååä¸ååĨŊįč§č¯č åæ¨å¨č ã'}, {'block_bbox': [9.884378, 538.3683, 359.43878, 652.03644], 'block_label': 'text', 'block_content': 'âé˛čąæžåč¯æäŊ ææ ˇčĩ°čŋīŧ大å°įĨéäŊ \nåŋä¸įæ¯ä¸ä¸Ēč§čŊâĻâĻ"åįĢįšéäēéŋæ¯éŠŦæ\n大åĻįģŧåæĨŧäēåąīŧä¸éĩäŧįžįæåŖ°å¨čĩ°åģéå\nåãåžĒįįæįæåžčŊģčŊģæ¨åŧä¸é´æ厤įé¨īŧ\nåĻįäģŦæŖčˇįčå¸åĻåąä¸æææ˛ãåä¸éĻæãã'}, {'block_bbox': [390.88583, 610.61304, 741.1856, 747.91656], 'block_label': 'text', 'block_content': 'å¨åįĢįšéäēå ¨åŊåĻåĨŗčįåˇĨäŊįįēĻįŋ°\nå¨ÂˇįšéĻå°åžˇÂˇå¯čąåĄå°ąæ¯å ļä¸ä¸äŊãåĨšæžå¨\nä¸ååĨŗååĻéĸæģč¯ģįĄåŖĢåĻäŊīŧį įŠļæšåæ¯åĨŗ\næ§éĸå¯ŧåä¸į¤žäŧååąãå ļé´īŧåĨšåŽå°čĩ°čŽŋä¸åŊ\nå¤ä¸Ēå°åēīŧčˇåžäēč§å¯ä¸åŊį¤žäŧååąįįŦŦä¸\næčĩæã'}, {'block_bbox': [10.115321, 658.7913, 359.40344, 771.3188], 'block_label': 'text', 'block_content': 'čŋæ¯åįšåéĸéŋæ¯éŠŦæ大åĻæåĻįšįä¸\nčä¸æææ˛č¯žãä¸ēäē莊åĻįäģŦæ´åĨŊå°įč§Ŗæ\nč¯å¤§æīŧčå¸å°¤æ¯æ¡įŠįŊéģåžˇč¨å°Âˇäž¯čĩå é\nåįŋģč¯åč§Ŗéæč¯ãéįäŧ´åĨåŖ°åčĩˇīŧåĻįäģŦ\nčžšåąčžšéįčææå¨čēĢäŊīŧį°åēæ°æ°įįã'}, {'block_bbox': [809.6597, 705.4076, 1485.5686, 747.42346], 'block_label': 'figure_title', 'block_content': 'å¨åįĢįšéäēä¸äš å丞åįįŦŦå åąä¸åŊéŖįæåčä¸īŧåŊå°å°åĻįäŊéĒéŖįåļäŊã\nä¸åŊéŠģåįĢįšéäē大äŊŋéĻäžåž'}, {'block_bbox': [389.62894, 753.4464, 742.0593, 890.9599], 'block_label': 'text', 'block_content': 'č°čĩˇå¨ä¸åŊæąåĻįįģåīŧįēĻįŋ°å¨čŽ°åŋįš\næ°īŧâä¸åŊįååąå¨åŊäģä¸įæ¯įŦä¸æ äēįã\næ˛ŋįä¸åŊįšč˛į¤žäŧä¸ģäšéčˇ¯ååŽåčĄīŧä¸åŊ\nåé äēååąåĨčŋšīŧčŋä¸åéŊįĻģä¸åŧä¸åŊå ąäē§å \nįéĸå¯ŧãä¸åŊįååąįģéĒåŧåžčŽ¸å¤åŊåŽļåĻäš \nåé´ãâ'}, {'block_bbox': [9.867948, 777.38995, 360.40143, 843.43], 'block_label': 'text', 'block_content': 'âčŋæ¯ä¸æææ˛åįē§įīŧå ąæ32äēēãåĻ\nį大é¨åæĨčĒéĻéŊéŋæ¯éŠŦæįä¸å°åĻīŧåš´éž\næå°įäģ æ6å˛ã"å°¤æ¯æåč¯čŽ°č ã'}, {'block_bbox': [9.780596, 850.09344, 359.62875, 1059.8483], 'block_label': 'text', 'block_content': 'å°¤æ¯æäģåš´23å˛īŧæ¯åįĢįšéäēä¸æå ŦįĢ\nåĻæ Ąįčēæ¯čå¸ãåĨš12å˛åŧå§å¨åįšåéĸåĻ\näš ä¸æīŧå¨2017åš´įŦŦååą"æąč¯æĄĨ"ä¸įä¸åĻį\nä¸ææ¯čĩä¸čˇåžåįĢįšéäēčĩåēįŦŦä¸åīŧåšļå\nåäŧ´äģŖ襨åįĢįšéäēååžä¸åŊåå åŗčĩīŧčˇåž\nåĸäŊäŧčåĨã2022åš´čĩˇīŧå°¤æ¯æåŧå§å¨åįšå\néĸå ŧčææä¸æææ˛īŧæ¯å¨æĢ两ä¸Ēč¯žæļãâä¸åŊ\næåå大į˛žæˇąīŧæå¸ææįåĻįäģŦčŊå¤éčŋä¸\næææ˛æ´åĨŊå°įč§Ŗä¸åŊæåã"åĨšč¯´ã'}, {'block_bbox': [771.98157, 777.02783, 1124.4025, 1059.2194], 'block_label': 'text', 'block_content': 'âä¸įŽĄčŋčŋéŊæ¯åŽĸäēēīŧč¯ˇä¸į¨åŽĸæ°īŧį¸įēĻ\nåĨŊäēå¨ä¸čĩˇīŧæäģŦæŦĸčŋäŊ âĻ"å¨ä¸åēä¸åé\nåš´čč°æ´ģå¨ä¸īŧååˇčˇ¯æĄĨä¸æšååˇĨååŊå°å¤§\nåĻįååąãåäēŦæŦĸčŋäŊ ããåįĢįšéäēææ¯åĻ\néĸ莥įŽæēį§åĻä¸åˇĨį¨ä¸ä¸åĻįé˛å¤ĢåĄÂˇč°ĸæ\næ¯å ļä¸ä¸åæŧåąč īŧåĨšåžæŠäžŋå¨åéĸåĻäš ä¸\næīŧä¸į´å¨ä¸ēåģä¸åŊįåĻäŊåå¤ãâčŋåĨæč¯\næ¯æäģŦ两åŊäēēæ°åč°įįå¨åį §ãæ čŽēæ¯æ\nčēĢäēåįĢįšéäēåēįĄčŽžæŊåģē莞įä¸äŧååˇĨīŧ\nčŋæ¯å¨ä¸åŊįåĻįåįĢįšéäēåĻåīŧ两åŊäēē\næ°æēæåĒåīŧåŋ å°æ¨å¨ä¸¤åŊå ŗįŗģä¸æååå\nåąã"é˛å¤ĢåĄč¯´ã'}, {'block_bbox': [1155.9126, 777.7057, 1331.4768, 795.6466], 'block_label': 'text', 'block_content': 'įĻįåįēĸæĩˇįåįŠéĻã'}, {'block_bbox': [1153.6993, 801.5608, 1504.5693, 987.6245], 'block_label': 'text', 'block_content': 'åįŠéĻäēåąéåįä¸ä¸ĒåæčĒéŋæåŠ\næ¯å¤åįä¸åŊå¤äģŖéļåļé å¨īŧįŊčēĢä¸åį\nâä¸ââå"âįĻ "âåąą"įæąåãâčŋäģļæįŠč¯\næīŧåžæŠäģĨåæäģŦå°ąéčŋæĩˇä¸ä¸įģ¸äščˇ¯čŋčĄ\nč´¸æåžæĨä¸æåäē¤æĩãčŋäšæ¯åįĢįšéäē\nä¸ä¸åŊååĨŊäē¤åžåå˛įæåč¯æã"åįēĸæĩˇ\nįåįŠéĻį įŠļä¸æįŽé¨č´č´Ŗäēēäŧč¨äēæ¯Âˇįš\næ¯æŗå šåč¯´ã'}, {'block_bbox': [390.19556, 897.58984, 742.03076, 1035.8021], 'block_label': 'text', 'block_content': 'æŖå¨čĨŋå大åĻåĻäš įåįĢįšéäēååŖĢį\nįŠåĸįåĄÂˇæŗŊįŠäŧ寚ä¸åŊæææˇąåææ ã8\nįåĄå¨į¤žäē¤åĒäŊä¸åä¸čŋæ ˇä¸æŽĩč¯īŧâčŋæ¯æ\näēēįįéčĻä¸æĨīŧčĒæ¤ææĨæäēä¸åååēį\néåīŧčĩäēæįŠŋčļčæŖįåéã"'}, {'block_bbox': [1154.4485, 993.47705, 1503.8442, 1107.7343], 'block_label': 'text', 'block_content': 'åįĢįšéäēåŊåŽļåįŠéĻčå¤åĻåäēēįąģåĻ\nį įŠļåč˛å°č¡įšéĻå°åžˇåååįąä¸åŊæ\nåãäģ襨į¤ēīŧâåĻäš åŊŧæ¤įč¯č¨åæåīŧå°å¸Ž\nåŠåä¸ä¸¤åŊäēēæ°æ´åĨŊå°įč§ŖåŊŧæ¤īŧåŠååæš\näē¤åžīŧæåģēåč°æĄĨæĸã"'}, {'block_bbox': [391.1788, 1041.2518, 740.86304, 1131.4594], 'block_label': 'text', 'block_content': 'įŠåĸįåĄå¯åå ŗæŗ¨ä¸åŊå¨įģæĩãį§æãæ\nč˛įéĸåįååąīŧâä¸åŊå¨į§į įæšéĸįåŽå\nä¸æĨäŋąåĸãå¨ä¸åŊåĻäš įįģå莊æįå°æ´åšŋ\néįä¸įīŧäģä¸åįåĒæĩ ãâ'}, {'block_bbox': [9.44888, 1065.2853, 360.20395, 1180.0414], 'block_label': 'text', 'block_content': 'âå§å§īŧäŊ æŗåģä¸åŊåīŧ"âé常æŗīŧææŗ\nåģįæ åŽĢãįŦéŋåã"å°¤æ¯æįåĻįä¸æä¸å¯š\nčŊæåčįå§åĻšīŧå§å§é˛å¨ äģåš´15å˛īŧåĻšåĻš\nčå¨ 14å˛īŧ两äēēéŊåˇ˛å¨åįšåéĸåĻäš å¤åš´īŧ\nä¸æč¯´åžæ ŧå¤æĩåŠã'}, {'block_bbox': [771.5103, 1065.0969, 1123.4521, 1179.5637], 'block_label': 'text', 'block_content': 'åįĢįšéäēéĢįæč˛å§åäŧä¸ģäģģåŠįč¨\néŠŦį襨į¤ēīŧâæ¯åš´æäģŦéŊäŧįģįģåĻįå°ä¸åŊčŽŋ\néŽåĻäš īŧįŽåæčļ čŋ5000ååįĢįšéäēåĻį\nå¨ä¸åŊįåĻãåĻäš ä¸åŊįæč˛įģéĒīŧæåŠäē\næååįĢįšéäēįæč˛æ°´åšŗã"'}, {'block_bbox': [1153.9072, 1114.012, 1503.9468, 1347.0771], 'block_label': 'text', 'block_content': 'åįĢįšéäēåŊåŽļåįŠéĻéĻéŋåĄåä¸ÂˇåĒ\néčžžå§Âˇäŧį´ įĻæžå¤æŦĄčŽŋéŽä¸åŊīŧ寚ä¸åææ\nįäŧ æŋä¸åæ°ãį°äģŖååįŠéĻįåģē莞ä¸ååą\nå°čąĄæˇąåģãâä¸åŊåįŠéĻä¸äģ æ莸å¤äŋååŽåĨŊ\nįæįŠīŧčŋå åčŋį¨å čŋį§æææŽĩčŋčĄåąį¤ēīŧ\n帎åŠäēēäģŦæ´åĨŊįč§Ŗä¸åææã"åĄåä¸č¯´īŧâå\nįĢįšéäēä¸ä¸åŊéŊæĨææ äš įææīŧå§įģį¸\näēįč§Ŗãį¸äēå°éãæå¸ææĒæĨä¸ä¸åŊåčĄ\nå åŧēåäŊīŧå ąååä¸įåąį¤ēéæ´˛åäēæ´˛įįŋ\nįææãâ'}, {'block_bbox': [390.84042, 1137.481, 741.0446, 1346.7771], 'block_label': 'text', 'block_content': '23å˛įččŋĒäē¡åæ¯čæŗč¯ēæ¯åˇ˛å¨åįš\nåéĸåĻäš 3åš´īŧå¨ä¸åŊäšĻæŗãä¸åŊįģįæšéĸ襨\nį°ååäŧį§īŧå¨2024åš´åįĢįšéäēčĩåēį\nâæąč¯æĄĨ"æ¯čĩä¸čˇåžä¸įåĨãččŋĒäēč¯´īŧâåĻ\näš ä¸åŊäšĻæŗ莊æįå åŋååžåŽåŽåįē¯į˛šãæ\näšåæŦĸä¸åŊįæéĨ°īŧå¸ææĒæĨčŊåģä¸åŊåĻäš īŧ\næä¸åŊä¸åæ°æå į´ čå ĨæčŖ 莞莥ä¸īŧåäŊ\nåēæ´å¤į˛žįžäŊåīŧäšæåįšæååäēĢįģæ´å¤\nįä¸åŊæåãâ'}, {'block_bbox': [8.636964, 1186.1119, 359.81888, 1299.478], 'block_label': 'text', 'block_content': 'é˛å¨ å¯ščŽ°č č¯´īŧâčŋäēåš´æĨīŧæį寚ä¸æ\nåä¸åŊæåįįįąīŧæäģŦå§åĻšäŋŠå§įģį¸äēéŧ\nåąīŧä¸čĩˇåĻäš ãæäģŦįä¸æä¸å¤Šæ¯ä¸å¤ŠåĨŊīŧčŋ\nåĻäŧäēä¸ææåä¸åŊčãæäģŦä¸åŽčĻå°ä¸åŊ\nåģãåĻåĨŊä¸æīŧæäģŦįæĒæĨä¸æ¯æĸĻīŧâ'}, {'block_bbox': [9.65557, 1305.0817, 359.62732, 1347.9409], 'block_label': 'text', 'block_content': 'æŽåįšåéĸä¸æšéĸéŋéģé¸ŖéŖäģįģīŧčŋæ\nåéĸæįĢäē2013åš´3æīŧįąč´ĩåˇč´ĸįģ大åĻå'}, {'block_bbox': [791.91876, 1201.0499, 1104.4822, 1260.1809], 'block_label': 'text', 'block_content': 'âå ąååä¸įåąį¤ēé\næ´˛åäēæ´˛įįŋįææâ'}, {'block_bbox': [772.4803, 1281.0001, 1123.4064, 1348.0051], 'block_label': 'text', 'block_content': 'äģéŋæ¯éŠŦæåēåīŧæ˛ŋįčŋčæ˛æįįåąą\nå Ŧčˇ¯ä¸čˇ¯åä¸å¯ģæžä¸čˇ¯å°čŋšã銹čŊĻ两ä¸Ēå°\næļīŧ莰č æĨå°äŊäēåįĢįšéäē港åŖåå¸éŠŦč¨'}], 'layout_det_res': {'input_path': None, 'page_index': None, 'boxes': [{'cls_id': 1, 'label': 'image', 'score': 0.985334038734436, 'coordinate': [773.8337, 200.6484, 1505.5646, 687.1228]}, {'cls_id': 2, 'label': 'text', 'score': 0.9781306385993958, 'coordinate': [771.98157, 777.02783, 1124.4025, 1059.2194]}, {'cls_id': 2, 'label': 'text', 'score': 0.9772591590881348, 'coordinate': [1153.9072, 1114.012, 1503.9468, 1347.0771]}, {'cls_id': 2, 'label': 'text', 'score': 0.9764459133148193, 'coordinate': [390.74124, 298.42255, 740.8009, 436.79193]}, {'cls_id': 2, 'label': 'text', 'score': 0.9752683639526367, 'coordinate': [9.714512, 202.68811, 359.62323, 340.3127]}, {'cls_id': 2, 'label': 'text', 'score': 0.9751600027084351, 'coordinate': [1153.6993, 801.5608, 1504.5693, 987.6245]}, {'cls_id': 2, 'label': 'text', 'score': 0.9741775989532471, 'coordinate': [9.780596, 850.09344, 359.62875, 1059.8483]}, {'cls_id': 2, 'label': 'text', 'score': 0.9723023772239685, 'coordinate': [390.39642, 201.85085, 741.43414, 292.60092]}, {'cls_id': 2, 'label': 'text', 'score': 0.9717830419540405, 'coordinate': [390.84042, 1137.481, 741.0446, 1346.7771]}, {'cls_id': 2, 'label': 'text', 'score': 0.970496654510498, 'coordinate': [390.88583, 610.61304, 741.1856, 747.91656]}, {'cls_id': 2, 'label': 'text', 'score': 0.967951774597168, 'coordinate': [8.636964, 1186.1119, 359.81888, 1299.478]}, {'cls_id': 2, 'label': 'text', 'score': 0.9675101637840271, 'coordinate': [390.19556, 897.58984, 742.03076, 1035.8021]}, {'cls_id': 2, 'label': 'text', 'score': 0.9672409296035767, 'coordinate': [389.62894, 753.4464, 742.0593, 890.9599]}, {'cls_id': 2, 'label': 'text', 'score': 0.9657630324363708, 'coordinate': [10.579921, 346.26508, 359.13733, 436.17682]}, {'cls_id': 2, 'label': 'text', 'score': 0.9655840396881104, 'coordinate': [771.5103, 1065.0969, 1123.4521, 1179.5637]}, {'cls_id': 2, 'label': 'text', 'score': 0.9651231169700623, 'coordinate': [1154.4485, 993.47705, 1503.8442, 1107.7343]}, {'cls_id': 2, 'label': 'text', 'score': 0.9631907343864441, 'coordinate': [772.4803, 1281.0001, 1123.4064, 1348.0051]}, {'cls_id': 2, 'label': 'text', 'score': 0.9616568684577942, 'coordinate': [9.44888, 1065.2853, 360.20395, 1180.0414]}, {'cls_id': 2, 'label': 'text', 'score': 0.9596402645111084, 'coordinate': [10.115321, 658.7913, 359.40344, 771.3188]}, {'cls_id': 2, 'label': 'text', 'score': 0.9591165781021118, 'coordinate': [391.1788, 1041.2518, 740.86304, 1131.4594]}, {'cls_id': 2, 'label': 'text', 'score': 0.9564457535743713, 'coordinate': [9.884378, 538.3683, 359.43878, 652.03644]}, {'cls_id': 2, 'label': 'text', 'score': 0.9525545835494995, 'coordinate': [390.89084, 538.1777, 742.1934, 604.6777]}, {'cls_id': 2, 'label': 'text', 'score': 0.9493281245231628, 'coordinate': [9.867948, 777.38995, 360.40143, 843.43]}, {'cls_id': 2, 'label': 'text', 'score': 0.9400925040245056, 'coordinate': [9.65557, 1305.0817, 359.62732, 1347.9409]}, {'cls_id': 6, 'label': 'figure_title', 'score': 0.9255779385566711, 'coordinate': [809.6597, 705.4076, 1485.5686, 747.42346]}, {'cls_id': 2, 'label': 'text', 'score': 0.9046083688735962, 'coordinate': [1155.9126, 777.7057, 1331.4768, 795.6466]}, {'cls_id': 2, 'label': 'text', 'score': 0.8666954040527344, 'coordinate': [410.51892, 457.0816, 722.768, 516.78217]}, {'cls_id': 0, 'label': 'paragraph_title', 'score': 0.7959974408149719, 'coordinate': [30.334734, 457.53757, 341.92758, 516.81995]}, {'cls_id': 2, 'label': 'text', 'score': 0.7298153042793274, 'coordinate': [791.91876, 1201.0499, 1104.4822, 1260.1809]}, {'cls_id': 6, 'label': 'figure_title', 'score': 0.6074362397193909, 'coordinate': [587.4096, 160.58267, 927.6319, 179.2817]}, {'cls_id': 2, 'label': 'text', 'score': 0.584621012210846, 'coordinate': [133.36868, 40.128025, 1383.7496, 123.51852]}]}, 'overall_ocr_res': {'input_path': None, 'page_index': None, 'model_settings': {'use_doc_preprocessor': False, 'use_textline_orientation': False}, 'dt_polys': array([[[ 122, 28], ..., [ 122, 135]],
...,
[[1156, 1330],
...,
[1156, 1351]]], dtype=int16), 'text_det_params': {'limit_side_len': 960, 'limit_type': 'max', 'thresh': 0.3, 'box_thresh': 0.6, 'unclip_ratio': 2.0}, 'text_type': 'general', 'textline_orientation_angles': array([-1, ..., -1]), 'text_rec_score_thresh': 0, 'rec_texts': ['åŠååæšäē¤åž', 'æåģēåč°æĄĨæĸ', 'čĨŋ', 'æŦæĨ莰č
æ˛å°æäģģåŊĻéģåšæ', 'čēĢįä¸åŊäŧ įģæ°ææčŖ
įåįĢįšéäēé', 'åįĢįšéäēéĢįæč˛ä¸į įŠļéĸåäŊåģēįĢīŧåŧ', 'åš´äžæŦĄįģå°čĄ¨æŧä¸åŊæ°æčãį°äģŖčãæåč', '莞äēä¸åŊč¯č¨č¯žį¨åä¸åŊæåč¯žį¨īŧæŗ¨ååĻ', 'įīŧæŧåĻįčå§ŋčĩĸåžį°åēč§äŧéĩéĩæåŖ°ãčŋ', 'į2ä¸äŊäēēæŦĄã10äŊåš´æĨīŧåįšåéĸåˇ˛æä¸ē', 'æ¯æĨååįĢįšéäēéĢįæč˛ä¸į įŠļéĸåååĻ', 'åŊå°æ°äŧäēč§Ŗä¸åŊįä¸æįĒåŖã', 'éĸ(äģĨä¸įŽį§°"åįšåéĸ"丞åâåčŋæ°åš´"ä¸åŊ', 'éģé¸ŖéŖ襨į¤ēīŧéįæĨåĻäš ä¸æįäēēæĨį', 'æčæ¯čĩįåēæ¯ã', 'åĸå¤īŧéŋæ¯éŠŦæ大åĻæåĻįšåˇ˛éžäģĨæģĄčļŗæåĻ', 'ä¸åŊååįĢįšéäēäŧ įģåč°æˇąåãčŋåš´', 'éčĻã2024åš´4æīŧįąä¸äŧčééåĸæåąå', 'æĨ,å¨éĢč´¨éå
ąåģēâä¸å¸Ļä¸čˇ¯"æĄæļä¸īŧä¸å两', 'åˇčˇ¯æĄĨæŋåģēįåéĸæåĻæĨŧ饚įŽå¨éŋæ¯éŠŦæåŧ', 'åŊäēēæäē¤æĩä¸ææˇąåīŧäēåŠåäŊįæ°æåēįĄ', 'åˇĨåģē莞īŧéĸ莥äģåš´ä¸ååš´åŗģåˇĨīŧåģēæåå°ä¸ēå', 'æĨįæˇąåã', 'įšåéĸæäžå
¨æ°įååĻåēå°ã', 'âåĻåĨŊä¸æīŧæäģŦį', 'âå¨ä¸åŊåĻäš įįģå', 'æĒæĨä¸æ¯æĸĻ"', '莊æįå°æ´åšŋéįä¸įâ', 'âé˛čąæžåč¯æäŊ ææ ˇčĩ°čŋīŧ大å°įĨéäŊ ', 'å¤åš´æĨīŧåįĢįšéäēåšŋ大čĩ´åįåĻįå', 'åŋä¸įæ¯ä¸ä¸Ēč§čŊâĻâĻ"åįĢįšéäēéŋæ¯éŠŦæ', 'åščŽäēēåį§¯ææčēĢåŊåŽļåģē莞īŧæä¸ēåŠåč¯ĨåŊ', '大åĻįģŧåæĨŧäēåąīŧä¸éĩäŧįžįæåŖ°å¨čĩ°åģéå', 'ååąįäēēæååä¸ååĨŊįč§č¯č
åæ¨å¨č
ã', 'åãåžĒįįæįæåžčŊģčŊģæ¨åŧä¸é´æ厤įé¨īŧ', 'å¨åįĢįšéäēå
¨åŊåĻåĨŗčįåˇĨäŊįįēĻįŋ°', 'åĻįäģŦæŖčˇįčå¸åĻåąä¸æææ˛ãåä¸éĻæãã', 'å¨ÂˇįšéĻå°åžˇÂˇå¯čąåĄå°ąæ¯å
ļä¸ä¸äŊãåĨšæžå¨', 'čŋæ¯åįšåéĸéŋæ¯éŠŦæ大åĻæåĻįšįä¸', 'ä¸ååĨŗååĻéĸæģč¯ģįĄåŖĢåĻäŊīŧį įŠļæšåæ¯åĨŗ', 'čä¸æææ˛č¯žãä¸ēäē莊åĻįäģŦæ´åĨŊå°įč§Ŗæ', 'æ§éĸå¯ŧåä¸į¤žäŧååąãå
ļé´īŧåĨšåŽå°čĩ°čŽŋä¸åŊ', 'č¯å¤§æīŧčå¸å°¤æ¯æ¡įŠįŊéģåžˇč¨å°Âˇäž¯čĩå é', 'å¤ä¸Ēå°åēīŧčˇåžäēč§å¯ä¸åŊį¤žäŧååąįįŦŦä¸', 'å¨åįĢįšéäēä¸äš
å丞åįįŦŦå
åąä¸åŊéŖįæåčä¸īŧåŊå°å°åĻįäŊéĒéŖįåļäŊã', 'åįŋģč¯åč§Ŗéæč¯ãéįäŧ´åĨåŖ°åčĩˇīŧåĻįäģŦ', 'æčĩæã', 'ä¸åŊéŠģåįĢįšéäē大äŊŋéĻäžåž', 'čžšåąčžšéįčææå¨čēĢäŊīŧį°åēæ°æ°įįã', 'č°čĩˇå¨ä¸åŊæąåĻįįģåīŧįēĻįŋ°å¨čŽ°åŋįš', 'âčŋæ¯ä¸æææ˛åįē§įīŧå
ąæ32äēēãåĻ', 'æ°īŧâä¸åŊįååąå¨åŊäģä¸įæ¯įŦä¸æ äēįã', 'âä¸įŽĄčŋčŋéŊæ¯åŽĸäēēīŧč¯ˇä¸į¨åŽĸæ°īŧį¸įēĻ', 'įĻįåįēĸæĩˇįåįŠéĻã', 'į大é¨åæĨčĒéĻéŊéŋæ¯éŠŦæįä¸å°åĻīŧåš´éž', 'æ˛ŋįä¸åŊįšč˛į¤žäŧä¸ģäšéčˇ¯ååŽåčĄīŧä¸åŊ', 'åĨŊäēå¨ä¸čĩˇīŧæäģŦæŦĸčŋäŊ âĻâĻâĻ"å¨ä¸åēä¸åé', 'åįŠéĻäēåąéåįä¸ä¸ĒåæčĒéŋæåŠ', 'æå°įäģ
æ6å˛ã"å°¤æ¯æåč¯čŽ°č
ã', 'åé äēååąåĨčŋšīŧčŋä¸åéŊįĻģä¸åŧä¸åŊå
ąäē§å
', 'åš´čč°æ´ģå¨ä¸īŧååˇčˇ¯æĄĨä¸æšååˇĨååŊå°å¤§', 'æ¯å¤åįä¸åŊå¤äģŖéļåļé
å¨īŧįŊčēĢä¸åį', 'å°¤æ¯æäģåš´23å˛īŧæ¯åįĢįšéäēä¸æå
ŦįĢ', 'įéĸå¯ŧãä¸åŊįååąįģéĒåŧåžčŽ¸å¤åŊåŽļåĻäš ', 'åĻįååąãåäēŦæŦĸčŋäŊ ããåįĢįšéäēææ¯åĻ', 'âä¸ââåââįĻ
ââåąą"įæąåãâčŋäģļæįŠč¯', 'åĻæ Ąįčēæ¯čå¸ãåĨš12å˛åŧå§å¨åįšåéĸåĻ', 'åé´ãâ', 'éĸ莥įŽæēį§åĻä¸åˇĨį¨ä¸ä¸åĻįé˛å¤ĢåĄÂˇč°ĸæ', 'æīŧåžæŠäģĨåæäģŦå°ąéčŋæĩˇä¸ä¸įģ¸äščˇ¯čŋčĄ', 'äš ä¸æīŧå¨2017åš´įŦŦååą"æąč¯æĄĨ"ä¸įä¸åĻį', 'æŖå¨čĨŋå大åĻåĻäš įåįĢįšéäēååŖĢį', 'æ¯å
ļä¸ä¸åæŧåąč
īŧåĨšåžæŠäžŋå¨åéĸåĻäš ä¸', 'č´¸æåžæĨä¸æåäē¤æĩãčŋäšæ¯åįĢįšéäē', 'ä¸ææ¯čĩä¸čˇåžåįĢįšéäēčĩåēįŦŦä¸åīŧåšļå', 'įŠåĸįåĄÂˇæŗŊįŠäŧ寚ä¸åŊæææˇąåææ
ã8', 'æīŧä¸į´å¨ä¸ēåģä¸åŊįåĻäŊåå¤ãâčŋåĨæč¯', 'ä¸ä¸åŊååĨŊäē¤åžåå˛įæåč¯æã"åįēĸæĩˇ', 'åäŧ´äģŖ襨åįĢįšéäēååžä¸åŊåå åŗčĩīŧčˇåž', 'æ¯æäģŦ两åŊäēēæ°åč°įįå¨åį
§ãæ čŽēæ¯æ', 'įåįŠéĻį įŠļä¸æįŽé¨č´č´Ŗäēēäŧč¨äēæ¯Âˇįš', 'åĸäŊäŧčåĨã2022åš´čĩˇīŧå°¤æ¯æåŧå§å¨åįšå', 'įåĄå¨į¤žäē¤åĒäŊä¸åä¸čŋæ ˇä¸æŽĩč¯īŧâčŋæ¯æ', 'čēĢäēåįĢįšéäēåēįĄčŽžæŊåģē莞įä¸äŧååˇĨīŧ', 'æ¯æŗå
šåč¯´ã', 'éĸå
ŧčææä¸æææ˛īŧæ¯å¨æĢ两ä¸Ēč¯žæļãâä¸åŊ', 'äēēįįéčĻä¸æĨīŧčĒæ¤ææĨæäēä¸åååēį', 'čŋæ¯å¨ä¸åŊįåĻįåįĢįšéäēåĻåīŧ两åŊäēē', 'åįĢįšéäēåŊåŽļåįŠéĻčå¤åĻåäēēįąģåĻ', 'æåå大į˛žæˇąīŧæå¸ææįåĻįäģŦčŊå¤éčŋä¸', 'éåīŧčĩäēæįŠŋčļčæŖįåéã"', 'æ°æēæåĒåīŧåŋ
å°æ¨å¨ä¸¤åŊå
ŗįŗģä¸æååå', 'į įŠļåč˛å°č¡įšéĻå°åžˇåååįąä¸åŊæ', 'æææ˛æ´åĨŊå°įč§Ŗä¸åŊæåã"åĨšč¯´ã', 'įŠåĸįåĄå¯åå
ŗæŗ¨ä¸åŊå¨įģæĩãį§æãæ', 'åąã"é˛å¤ĢåĄč¯´ã', 'åãäģ襨į¤ēīŧâåĻäš åŊŧæ¤įč¯č¨åæåīŧå°å¸Ž', 'âå§å§īŧäŊ æŗåģä¸åŊåīŧ"âé常æŗīŧææŗ', 'č˛įéĸåįååąīŧâä¸åŊå¨į§į įæšéĸįåŽå', 'åįĢįšéäēéĢįæč˛å§åäŧä¸ģäģģåŠįč¨', 'åŠåä¸ä¸¤åŊäēēæ°æ´åĨŊå°įč§ŖåŊŧæ¤īŧåŠååæš', 'åģįæ
åŽĢãįŦéŋåã"å°¤æ¯æįåĻįä¸æä¸å¯š', 'ä¸æĨäŋąåĸãå¨ä¸åŊåĻäš įįģå莊æįå°æ´åšŋ', 'éŠŦį襨į¤ēīŧâæ¯åš´æäģŦéŊäŧįģįģåĻįå°ä¸åŊčŽŋ', 'äē¤åžīŧæåģēåč°æĄĨæĸã"', 'čŊæåčįå§åĻšīŧå§å§é˛å¨
äģåš´15å˛īŧåĻšåĻš', 'éįä¸įīŧäģä¸åįåĒæĩ
ãâ', 'éŽåĻäš īŧįŽåæčļ
čŋ5000ååįĢįšéäēåĻį', 'åįĢįšéäēåŊåŽļåįŠéĻéĻéŋåĄåä¸ÂˇåĒ', 'čå¨
14å˛īŧ两äēēéŊåˇ˛å¨åįšåéĸåĻäš å¤åš´īŧ', '23å˛įččŋĒäē¡åæ¯čæŗč¯ēæ¯åˇ˛å¨åįš', 'å¨ä¸åŊįåĻãåĻäš ä¸åŊįæč˛įģéĒīŧæåŠäē', 'éčžžå§Âˇäŧį´ įĻæžå¤æŦĄčŽŋéŽä¸åŊīŧ寚ä¸åææ', 'ä¸æč¯´åžæ ŧå¤æĩåŠã', 'åéĸåĻäš 3åš´īŧå¨ä¸åŊäšĻæŗãä¸åŊįģįæšéĸ襨', 'æååįĢįšéäēįæč˛æ°´åšŗã"', 'įäŧ æŋä¸åæ°ãį°äģŖååįŠéĻįåģē莞ä¸ååą', 'é˛å¨
å¯ščŽ°č
č¯´īŧâčŋäēåš´æĨīŧæį寚ä¸æ', 'į°ååäŧį§īŧå¨2024åš´åįĢįšéäēčĩåēį', 'å°čąĄæˇąåģãâä¸åŊåįŠéĻä¸äģ
æ莸å¤äŋååŽåĨŊ', 'âå
ąååä¸įåąį¤ēé', 'åä¸åŊæåįįįąīŧæäģŦå§åĻšäŋŠå§įģį¸äēéŧ', 'âæąč¯æĄĨ"æ¯čĩä¸čˇåžä¸įåĨãččŋĒäēč¯´īŧâåĻ', 'įæįŠīŧčŋå
åčŋį¨å
čŋį§æææŽĩčŋčĄåąį¤ēīŧ', 'åąīŧä¸čĩˇåĻäš ãæäģŦįä¸æä¸å¤Šæ¯ä¸å¤ŠåĨŊīŧčŋ', 'äš ä¸åŊäšĻæŗ莊æįå
åŋååžåŽåŽåįē¯į˛šãæ', 'æ´˛åäēæ´˛įįŋįææâ', '帎åŠäēēäģŦæ´åĨŊįč§Ŗä¸åææã"åĄåä¸č¯´īŧâå', 'åĻäŧäēä¸ææåä¸åŊčãæäģŦä¸åŽčĻå°ä¸åŊ', 'äšåæŦĸä¸åŊįæéĨ°īŧå¸ææĒæĨčŊåģä¸åŊåĻäš īŧ', 'įĢįšéäēä¸ä¸åŊéŊæĨææ äš
įææīŧå§įģį¸', 'åģãåĻåĨŊä¸æīŧæäģŦįæĒæĨä¸æ¯æĸĻīŧâ', 'æä¸åŊä¸åæ°æå
į´ čå
ĨæčŖ
莞莥ä¸īŧåäŊ', 'äģéŋæ¯éŠŦæåēåīŧæ˛ŋįčŋčæ˛æįįåąą', 'äēįč§Ŗãį¸äēå°éãæå¸ææĒæĨä¸ä¸åŊåčĄ', 'æŽåįšåéĸä¸æšéĸéŋéģé¸ŖéŖäģįģīŧčŋæ', 'åēæ´å¤į˛žįžäŊåīŧäšæåįšæååäēĢįģæ´å¤', 'å
Ŧčˇ¯ä¸čˇ¯åä¸å¯ģæžä¸čˇ¯å°čŋšã銹čŊĻ两ä¸Ēå°', 'å åŧēåäŊīŧå
ąååä¸įåąį¤ēéæ´˛åäēæ´˛įįŋ', 'åéĸæįĢäē2013åš´3æīŧįąč´ĩåˇč´ĸįģ大åĻå', 'įä¸åŊæåãâ', 'æļīŧ莰č
æĨå°äŊäēåįĢįšéäē港åŖåå¸éŠŦč¨', 'įææãâ'], 'rec_scores': array([0.99982357, ..., 0.93637466]), 'rec_polys': array([[[ 122, 28],
...,
[ 122, 135]],
...,
[[1156, 1330],
...,
[1156, 1351]]], dtype=int16), 'rec_boxes': array([[ 122, ..., 135],
...,
[1156, ..., 1351]], dtype=int16)}}}
```
paddlex --pipeline PP-StructureV3 \
--input pp_structure_v3_demo.png \
--use_doc_orientation_classify False \
--use_doc_unwarping False \
--use_textline_orientation False \
--save_path ./output \
--device gpu:0
What's the result
{'res': {'input_path': 'pp_structure_v3_demo.png', 'page_index': None, 'model_settings': {'use_doc_preprocessor': False, 'use_general_ocr': True, 'use_seal_recognition': True, 'use_table_recognition': True, 'use_formula_recognition': True}, 'layout_det_res': {'input_path': None, 'page_index': None, 'boxes': [{'cls_id': 2, 'label': 'text', 'score': 0.9853514432907104, 'coordinate': [770.9531, 776.6814, 1122.6057, 1058.7322]}, {'cls_id': 1, 'label': 'image', 'score': 0.9848673939704895, 'coordinate': [775.7434, 202.27979, 1502.8113, 686.02136]}, {'cls_id': 2, 'label': 'text', 'score': 0.983731746673584, 'coordinate': [1152.3197, 1113.3275, 1503.3029, 1346.586]}, {'cls_id': 2, 'label': 'text', 'score': 0.9832221865653992, 'coordinate': [1152.5602, 801.431, 1503.8436, 986.3563]}, {'cls_id': 2, 'label': 'text', 'score': 0.9829439520835876, 'coordinate': [9.549545, 849.5713, 359.1173, 1058.7488]}, {'cls_id': 2, 'label': 'text', 'score': 0.9811657667160034, 'coordinate': [389.58298, 1137.2659, 740.66235, 1346.7488]}, {'cls_id': 2, 'label': 'text', 'score': 0.9775941371917725, 'coordinate': [9.1302185, 201.85, 359.0409, 339.05692]}, {'cls_id': 2, 'label': 'text', 'score': 0.9750366806983948, 'coordinate': [389.71454, 752.96924, 740.544, 889.92456]}, {'cls_id': 2, 'label': 'text', 'score': 0.9738152027130127, 'coordinate': [389.94565, 298.55988, 740.5585, 435.5124]}, {'cls_id': 2, 'label': 'text', 'score': 0.9737328290939331, 'coordinate': [771.50256, 1065.4697, 1122.2582, 1178.7324]}, {'cls_id': 2, 'label': 'text', 'score': 0.9728517532348633, 'coordinate': [1152.5154, 993.3312, 1503.2349, 1106.327]}, {'cls_id': 2, 'label': 'text', 'score': 0.9725610017776489, 'coordinate': [9.372787, 1185.823, 359.31738, 1298.7227]}, {'cls_id': 2, 'label': 'text', 'score': 0.9724331498146057, 'coordinate': [389.62848, 610.7389, 740.83234, 746.2377]}, {'cls_id': 2, 'label': 'text', 'score': 0.9720287322998047, 'coordinate': [389.29898, 897.0936, 741.41516, 1034.6616]}, {'cls_id': 2, 'label': 'text', 'score': 0.9713053703308105, 'coordinate': [10.323685, 1065.4663, 359.6786, 1178.8872]}, {'cls_id': 2, 'label': 'text', 'score': 0.9689728021621704, 'coordinate': [9.336395, 537.6609, 359.2901, 652.1881]}, {'cls_id': 2, 'label': 'text', 'score': 0.9684857130050659, 'coordinate': [10.7608185, 345.95068, 358.93616, 434.64087]}, {'cls_id': 2, 'label': 'text', 'score': 0.9681928753852844, 'coordinate': [9.674866, 658.89075, 359.56528, 770.4319]}, {'cls_id': 2, 'label': 'text', 'score': 0.9634978175163269, 'coordinate': [770.9464, 1281.1785, 1122.6522, 1346.7156]}, {'cls_id': 2, 'label': 'text', 'score': 0.96304851770401, 'coordinate': [390.0113, 201.28055, 740.1684, 291.53073]}, {'cls_id': 2, 'label': 'text', 'score': 0.962053120136261, 'coordinate': [391.21393, 1040.952, 740.5046, 1130.32]}, {'cls_id': 2, 'label': 'text', 'score': 0.9565253853797913, 'coordinate': [10.113251, 777.1482, 359.439, 842.437]}, {'cls_id': 2, 'label': 'text', 'score': 0.9497362375259399, 'coordinate': [390.31357, 537.86285, 740.47595, 603.9285]}, {'cls_id': 2, 'label': 'text', 'score': 0.9371236562728882, 'coordinate': [10.2034, 1305.9753, 359.5958, 1346.7295]}, {'cls_id': 0, 'label': 'paragraph_title', 'score': 0.9338151216506958, 'coordinate': [791.6062, 1200.8479, 1103.3257, 1259.9324]}, {'cls_id': 0, 'label': 'paragraph_title', 'score': 0.9326773285865784, 'coordinate': [408.0737, 457.37024, 718.9509, 516.63464]}, {'cls_id': 0, 'label': 'paragraph_title', 'score': 0.9274250864982605, 'coordinate': [29.448685, 456.6762, 340.99194, 515.6999]}, {'cls_id': 2, 'label': 'text', 'score': 0.8742568492889404, 'coordinate': [1154.7095, 777.3624, 1330.3086, 794.5853]}, {'cls_id': 2, 'label': 'text', 'score': 0.8442489504814148, 'coordinate': [586.49316, 160.15454, 927.468, 179.64203]}, {'cls_id': 11, 'label': 'doc_title', 'score': 0.8332607746124268, 'coordinate': [133.80017, 37.41908, 1380.8601, 124.1429]}, {'cls_id': 6, 'label': 'figure_title', 'score': 0.6770150661468506, 'coordinate': [812.1718, 705.1199, 1484.6973, 747.1692]}]}, 'overall_ocr_res': {'input_path': None, 'page_index': None, 'model_settings': {'use_doc_preprocessor': False, 'use_textline_orientation': False}, 'dt_polys': array([[[133, 35],
...,
[133, 131]],
...,
[[ 13, 754],
...,
[ 13, 777]]], dtype=int16), 'text_det_params': {'limit_side_len': 960, 'limit_type': 'max', 'thresh': 0.3, 'box_thresh': 0.6, 'unclip_ratio': 2.0}, 'text_type': 'general', 'textline_orientation_angles': array([-1, ..., -1]), 'text_rec_score_thresh': 0.0, 'rec_texts': ['åŠååæšäē¤åž', 'æåģēåč°æĄĨæĸ', 'æŦæĨ莰č
', 'æ˛å°æ', 'äģģ', 'åŊĻ', 'éģåšæ', 'čēĢįä¸åŊäŧ įģæ°ææčŖ
įåįĢįšéäēé', 'åįĢįšéäēéĢįæč˛ä¸į įŠļéĸåäŊåģēįĢīŧåŧ', 'åš´äžæŦĄįģå°čĄ¨æŧä¸åŊæ°æčãį°äģŖčãæåč', '莞äēä¸åŊč¯č¨č¯žį¨åä¸åŊæåč¯žį¨īŧæŗ¨ååĻ', 'į,æŧåĻįčå§ŋčĩĸåžį°åēč§äŧéĩéĩæåŖ°ãčŋ', 'į2ä¸äŊäēēæŦĄã10äŊåš´æĨīŧåįšåéĸåˇ˛æä¸ē', 'æ¯æĨååįĢįšéäēéĢįæč˛ä¸į įŠļéĸåååĻ', 'åŊå°æ°äŧäēč§Ŗä¸åŊįä¸æįĒåŖã', 'éĸ(äģĨä¸įŽį§°"åįšåéĸ")丞å"åčŋæ°åš´"ä¸åŊ', 'éģé¸ŖéŖ襨į¤ē,éįæĨåĻäš ä¸æįäēēæĨį', 'æčæ¯čĩįåēæ¯ã', 'åĸå¤īŧéŋæ¯éŠŦæ大åĻæåĻįšåˇ˛éžäģĨæģĄčļŗæåĻ', 'ä¸åŊååįĢįšéäēäŧ įģåč°æˇąåãčŋåš´', 'éčĻã2024åš´4æīŧįąä¸äŧčééåĸæåąå', 'æĨ,å¨éĢč´¨éå
ąåģē"ä¸å¸Ļä¸čˇ¯"æĄæļä¸īŧä¸å两', 'åˇčˇ¯æĄĨæŋåģēįåéĸæåĻæĨŧ饚įŽå¨éŋæ¯éŠŦæåŧ', 'åŊäēēæäē¤æĩä¸ææˇąåīŧäēåŠåäŊįæ°æåēįĄ', 'åˇĨåģē莞,éĸ莥äģåš´ä¸ååš´įĢŖåˇĨ,åģēæåå°ä¸ēå', 'æĨįæˇąåã', 'įšåéĸæäžå
¨æ°įååĻåēå°ã', 'âåĻåĨŊä¸æīŧæäģŦį', 'âå¨ä¸åŊåĻäš įįģå', 'æĒæĨä¸æ¯æĸĻâ', '莊æįå°æ´åšŋéįä¸įâ', 'å¤åš´æĨ,åįĢįšéäēåšŋ大čĩ´åįåĻįå', 'åščŽäēēåį§¯ææčēĢåŊåŽļåģē莞,æä¸ēåŠåč¯ĨåŊ', 'ååąįäēēæååä¸ååĨŊįč§č¯č
åæ¨å¨č
ã', 'å¨åįĢįšéäēå
¨åŊåĻåĨŗčįåˇĨäŊįįēĻįŋ°', 'å¨ÂˇįšéĻå°åžˇÂˇå¯čąåĄå°ąæ¯å
ļä¸ä¸äŊãåĨšæžå¨', 'ä¸ååĨŗååĻéĸæģč¯ģįĄåŖĢåĻäŊ,į įŠļæšåæ¯åĨŗ', 'æ§éĸå¯ŧåä¸į¤žäŧååąãå
ļé´īŧåĨšåŽå°čĩ°čŽŋä¸åŊ', 'å¤ä¸Ēå°åēīŧčˇåžäēč§å¯ä¸åŊį¤žäŧååąįįŦŦä¸', 'å¨åįĢįšéäēä¸äš
å丞åįįŦŦå
åąä¸åŊéŖįæåčä¸īŧåŊå°å°åĻįäŊéĒéŖįåļäŊã', 'æčĩæã', 'ä¸åŊéŠģåįĢįšéäē大äŊŋéĻäžåž', 'âčŋæ¯ä¸æææ˛åįē§įīŧå
ąæ32äēēãåĻ', 'âä¸įŽĄčŋčŋéŊæ¯åŽĸäēēīŧč¯ˇä¸į¨åŽĸæ°;į¸įēĻ', 'įĻįåįēĸæĩˇįåįŠéĻã', 'į大é¨åæĨčĒéĻéŊéŋæ¯éŠŦæįä¸å°åĻīŧåš´éž', 'åĨŊäēå¨ä¸čĩˇ,æäģŦæŦĸčŋäŊ "å¨ä¸åēä¸åé', 'åįŠéĻäēåąéåįä¸ä¸ĒåæčĒéŋæåŠ', 'æå°įäģ
æ6å˛ã"å°¤æ¯æåč¯čŽ°č
ã', 'åš´čč°æ´ģå¨ä¸,ååˇčˇ¯æĄĨä¸æšååˇĨååŊå°å¤§', 'æ¯å¤åįä¸åŊå¤äģŖéļåļé
å¨,įŊčēĢä¸åį', 'å°¤æ¯æäģåš´23å˛īŧæ¯åįĢįšéäēä¸æå
ŦįĢ', 'åĻįååąãåäēŦæŦĸčŋäŊ ããåįĢįšéäēææ¯åĻ', 'âä¸ââå""įĻ
ââåąą"įæąåãâčŋäģļæįŠč¯', 'åĻæ Ąįčēæ¯čå¸ãåĨš12å˛åŧå§å¨åįšåéĸåĻ', 'éĸ莥įŽæēį§åĻä¸åˇĨį¨ä¸ä¸åĻįé˛å¤ĢåĄÂˇč°ĸæ', 'æ,åžæŠäģĨåæäģŦå°ąéčŋæĩˇä¸ä¸įģ¸äščˇ¯čŋčĄ', 'äš ä¸æ,å¨2017åš´įŦŦååą"æąč¯æĄĨ"ä¸įä¸åĻį', 'æ¯å
ļä¸ä¸åæŧåąč
,åĨšåžæŠäžŋå¨åéĸåĻäš ä¸', 'č´¸æåžæĨä¸æåäē¤æĩãčŋäšæ¯åįĢįšéäē', 'ä¸ææ¯čĩä¸čˇåžåįĢįšéäēčĩåēįŦŦä¸å,åšļå', 'æīŧä¸į´å¨ä¸ēåģä¸åŊįåĻäŊåå¤ãâčŋåĨæč¯', 'ä¸ä¸åŊååĨŊäē¤åžåå˛įæåč¯æã"åįēĸæĩˇ', 'åäŧ´äģŖ襨åįĢįšéäēååžä¸åŊåå åŗčĩ,čˇåž', 'æ¯æäģŦ两åŊäēēæ°åč°įįå¨åį
§ãæ čŽēæ¯æ', 'įåįŠéĻį įŠļä¸æįŽé¨č´č´Ŗäēēäŧč¨äēæ¯Âˇįš', 'åĸäŊäŧčåĨã2022åš´čĩˇīŧå°¤æ¯æåŧå§å¨åįšå', 'čēĢäēåįĢįšéäēåēįĄčŽžæŊåģē莞įä¸äŧååˇĨīŧ', 'æ¯æŗå
šåč¯´ã', 'éĸå
ŧčææä¸æææ˛,æ¯å¨æĢ两ä¸Ēč¯žæļãä¸åŊ', 'čŋæ¯å¨ä¸åŊįåĻįåįĢįšéäēåĻå,两åŊäēē', 'åįĢįšéäēåŊåŽļåįŠéĻčå¤åĻåäēēįąģåĻ', 'æåå大į˛žæˇą,æå¸ææįåĻįäģŦčŊå¤éčŋä¸', 'æ°æēæåĒå,åŋ
å°æ¨å¨ä¸¤åŊå
ŗįŗģä¸æååå', 'į įŠļåč˛å°č¡įšéĻå°åžˇåååįąä¸åŊæ', 'æææ˛æ´åĨŊå°įč§Ŗä¸åŊæåã"åĨšč¯´ã', 'įŠåĸįåĄå¯åå
ŗæŗ¨ä¸åŊå¨įģæĩãį§æãæ', 'åąã"é˛å¤ĢåĄč¯´ã', 'åãäģ襨į¤ēīŧâåĻäš åŊŧæ¤įč¯č¨åæåīŧå°å¸Ž', 'âå§å§,äŊ æŗåģä¸åŊå?"âé常æŗīŧææŗ', 'č˛įéĸåįååąīŧâä¸åŊå¨į§į įæšéĸįåŽå', 'åįĢįšéäēéĢįæč˛å§åäŧä¸ģäģģåŠįč¨', 'åŠåä¸ä¸¤åŊäēēæ°æ´åĨŊå°įč§ŖåŊŧæ¤īŧåŠååæš', 'åģįæ
åŽĢãįŦéŋåã"å°¤æ¯æįåĻįä¸æä¸å¯š', 'ä¸æĨäŋąåĸãå¨ä¸åŊåĻäš įįģå莊æįå°æ´åšŋ', 'éŠŦį襨į¤ēīŧâæ¯åš´æäģŦéŊäŧįģįģåĻįå°ä¸åŊčŽŋ', 'äē¤åž,æåģēåč°æĄĨæĸã"', 'čŊæåčįå§åĻš,å§å§é˛å¨
äģåš´15å˛īŧåĻšåĻš', 'éįä¸įīŧäģä¸åįåĒæĩ
ã', 'éŽåĻäš īŧįŽåæčļ
čŋ5000ååįĢįšéäēåĻį', 'åįĢįšéäēåŊåŽļåįŠéĻéĻéŋåĄåä¸ÂˇåĒ', 'čå¨
14å˛īŧ两äēēéŊåˇ˛å¨åįšåéĸåĻäš å¤åš´īŧ', '23å˛įččŋĒäē¡åæ¯čæŗč¯ēæ¯åˇ˛å¨åįš', 'å¨ä¸åŊįåĻãåĻäš ä¸åŊįæč˛įģéĒ,æåŠäē', 'éčžžå§Âˇäŧį´ įĻæžå¤æŦĄčŽŋéŽä¸åŊīŧ寚ä¸åææ', 'ä¸æč¯´åžæ ŧå¤æĩåŠã', 'åéĸåĻäš 3åš´īŧå¨ä¸åŊäšĻæŗãä¸åŊįģįæšéĸ襨', 'æååįĢįšéäēįæč˛æ°´åšŗãâ', 'įäŧ æŋä¸åæ°ãį°äģŖååįŠéĻįåģē莞ä¸ååą', 'é˛å¨
å¯ščŽ°č
č¯´īŧâčŋäēåš´æĨ,æį寚ä¸æ', 'į°ååäŧį§īŧå¨2024åš´åįĢįšéäēčĩåēį', 'âå
ąååä¸įåąį¤ēé', 'å°čąĄæˇąåģãâä¸åŊåįŠéĻä¸äģ
æ莸å¤äŋååŽåĨŊ', 'åä¸åŊæåįįįą,æäģŦå§åĻšäŋŠå§įģį¸äēéŧ', 'âæąč¯æĄĨ"æ¯čĩä¸čˇåžä¸įåĨãččŋĒäēč¯´īŧâåĻ', 'įæįŠ,čŋå
åčŋį¨å
čŋį§æææŽĩčŋčĄåąį¤ēīŧ', 'åą,ä¸čĩˇåĻäš ãæäģŦįä¸æä¸å¤Šæ¯ä¸å¤ŠåĨŊ,čŋ', 'äš ä¸åŊäšĻæŗ莊æįå
åŋååžåŽåŽåįē¯į˛šãæ', 'æ´˛åäēæ´˛įįŋįææâ', '帎åŠäēēäģŦæ´åĨŊįč§Ŗä¸åææã"åĄåä¸č¯´īŧå', 'åĻäŧäēä¸ææåä¸åŊčãæäģŦä¸åŽčĻå°ä¸åŊ', 'äšåæŦĸä¸åŊįæéĨ°,å¸ææĒæĨčŊåģä¸åŊåĻäš īŧ', 'įĢįšéäēä¸ä¸åŊéŊæĨææ äš
įææ,å§įģį¸', 'åģãåĻåĨŊä¸æ,æäģŦįæĒæĨä¸æ¯æĸĻ!"', 'æä¸åŊä¸åæ°æå
į´ čå
ĨæčŖ
莞莥ä¸īŧåäŊ', 'äģéŋæ¯éŠŦæåēå,æ˛ŋįčŋčæ˛æįįåąą', 'äēįč§Ŗãį¸äēå°éãæå¸ææĒæĨä¸ä¸åŊåčĄ', 'æŽåįšåéĸä¸æšéĸéŋéģé¸ŖéŖäģįģ,čŋæ', 'åēæ´å¤į˛žįžäŊåīŧäšæåįšæååäēĢįģæ´å¤', 'å
Ŧčˇ¯ä¸čˇ¯åä¸å¯ģæžä¸čˇ¯å°čŋšã銹čŊĻ两ä¸Ēå°', 'å åŧēåäŊ,å
ąååä¸įåąį¤ēéæ´˛åäēæ´˛įįŋ', 'åéĸæįĢäē2013åš´3æīŧįąč´ĩåˇč´ĸįģ大åĻå', 'įä¸åŊæåãâ', 'æļ,莰č
æĨå°äŊäēåįĢįšéäē港åŖåå¸éŠŦč¨', 'įææãâ', 'č°čĩˇå¨ä¸åŊæąåĻįįģå,įēĻįŋ°å¨čŽ°åŋįš', 'æ°īŧâä¸åŊįååąå¨åŊäģä¸įæ¯įŦä¸æ äēįã', 'æ˛ŋįä¸åŊįšč˛į¤žäŧä¸ģäšéčˇ¯ååŽåčĄīŧä¸åŊ', 'åé äēååąåĨčŋš,čŋä¸åéŊįĻģä¸åŧä¸åŊå
ąäē§å
', 'įéĸå¯ŧãä¸åŊįååąįģéĒåŧåžčŽ¸å¤åŊåŽļåĻäš ', 'åé´īŧâ', 'æŖå¨čĨŋå大åĻåĻäš įåįĢįšéäēååŖĢį', 'įŠåĸįåĄÂˇæŗŊįŠäŧ寚ä¸åŊæææˇąåææ
ã8', 'åš´åīŧå¨åäēŦå¸č大åĻčˇåžįĄåŖĢåĻäŊåīŧįŠåĸ', 'įåĄå¨į¤žäē¤åĒäŊä¸åä¸čŋæ ˇä¸æŽĩč¯īŧâčŋæ¯æ', 'äēēįįéčĻä¸æĨīŧčĒæ¤ææĨæäēä¸åååēį', 'éå.čĩäēæįŠŋčļčæŖįåéãâ', 'âé˛čąæžåč¯æäŊ ææ ˇčĩ°čŋīŧ大å°įĨéäŊ ', 'åŋä¸įæ¯ä¸ä¸Ēč§čŊ"åįĢįšéäēéŋæ¯éŠŦæ', '大åĻįģŧåæĨŧäēåąīŧä¸éĩäŧįžįæåŖ°å¨čĩ°åģéå', 'åãåžĒįįæįæåžčŊģčŊģæ¨åŧä¸é´æ厤įé¨īŧ', 'åĻįäģŦæŖčˇįčå¸åĻåąä¸æææ˛ãåä¸éĻæãã', 'čŋæ¯åįšåéĸéŋæ¯éŠŦæ大åĻæåĻįšįä¸', 'čä¸æææ˛č¯žãä¸ēäē莊åĻįäģŦæ´åĨŊå°įč§Ŗæ', 'č¯å¤§æīŧčå¸å°¤æ¯æ¡įŠįŊéģåžˇč¨å°Âˇäž¯čĩå é', 'åįŋģč¯åč§Ŗéæč¯ãéįäŧ´åĨåŖ°åčĩˇīŧåĻįäģŦ', 'čžšåąčžšéįčææå¨čēĢäŊīŧį°åēæ°æ°įįã'], 'rec_scores': array([0.99972075, ..., 0.96241361]), 'rec_polys': array([[[133, 35],
...,
[133, 131]],
...,
[[ 13, 754],
...,
[ 13, 777]]], dtype=int16), 'rec_boxes': array([[133, ..., 131],
...,
[ 13, ..., 777]], dtype=int16)}}}
paddlex --pipeline formula_recognition \
--input https://paddle-model-ecology.bj.bcebos.com/paddlex/demo_image/pipelines/general_formula_recognition_001.png \
--use_layout_detection True \
--use_doc_orientation_classify False \
--use_doc_unwarping False \
--layout_threshold 0.5 \
--layout_nms True \
--layout_unclip_ratio 1.0 \
--layout_merge_bboxes_mode "'large'"\
--save_path ./output \
--device gpu:0
What's the result
{'res': {'input_path': 'general_formula_recognition.png', 'model_settings': {'use_doc_preprocessor': False,'use_layout_detection': True}, 'layout_det_res': {'input_path': None, 'boxes': [{'cls_id': 2, 'label': 'text', 'score': 0.9778407216072083, 'coordinate': [271.257, 648.50824, 1040.2291, 774.8482]}, ...]}, 'formula_res_list': [{'rec_formula': '\\small\\begin{aligned}{p(\\mathbf{x})=c(\\mathbf{u})\\prod_{i}p(x_{i}).}\\\\ \\end{aligned}', 'formula_region_id': 1, 'dt_polys': ([553.0718, 802.0996, 758.75635, 853.093],)}, ...]}}
paddlex --pipeline seal_recognition \
--input https://paddle-model-ecology.bj.bcebos.com/paddlex/imgs/demo_image/seal_text_det.png \
--use_doc_orientation_classify False \
--use_doc_unwarping False \
--device gpu:0 \
--save_path ./output
What's the result
bash
{'res': {'input_path': 'seal_text_det.png', 'model_settings': {'use_doc_preprocessor': False, 'use_layout_detection': True}, 'layout_det_res': {'input_path': None, 'page_index': None, 'boxes': [{'cls_id': 16, 'label': 'seal', 'score': 0.975529670715332, 'coordinate': [6.191284, 0.16680908, 634.39325, 628.85345]}]}, 'seal_res_list': [{'input_path': None, 'page_index': None, 'model_settings': {'use_doc_preprocessor': False, 'use_textline_orientation': False}, 'dt_polys': [array([[320, 38],
[479, 92],
[483, 94],
[486, 97],
[579, 226],
[582, 230],
[582, 235],
[584, 383],
[584, 388],
[582, 392],
[578, 396],
[573, 398],
[566, 398],
[502, 380],
[497, 377],
[494, 374],
[491, 369],
[491, 366],
[488, 259],
[424, 172],
[318, 136],
[251, 154],
[200, 174],
[137, 260],
[133, 366],
[132, 370],
[130, 375],
[126, 378],
[123, 380],
[ 60, 398],
[ 55, 398],
[ 49, 397],
[ 45, 394],
[ 43, 390],
[ 41, 383],
[ 43, 236],
[ 44, 230],
[ 45, 227],
[141, 96],
[144, 93],
[148, 90],
[311, 38],
[315, 38]]), array([[461, 347],
[465, 350],
[468, 354],
[470, 360],
[470, 425],
[469, 429],
[467, 433],
[462, 437],
[456, 439],
[169, 439],
[165, 439],
[160, 436],
[157, 432],
[155, 426],
[154, 360],
[155, 356],
[158, 352],
[161, 348],
[168, 346],
[456, 346]]), array([[439, 445],
[441, 447],
[443, 451],
[444, 453],
[444, 497],
[443, 502],
[440, 504],
[437, 506],
[434, 507],
[189, 505],
[184, 504],
[182, 502],
[180, 498],
[179, 496],
[181, 453],
[182, 449],
[184, 446],
[188, 444],
[434, 444]]), array([[158, 468],
[199, 502],
[242, 522],
[299, 534],
[339, 532],
[373, 526],
[417, 508],
[459, 475],
[462, 474],
[467, 474],
[472, 476],
[502, 507],
[503, 510],
[504, 515],
[503, 518],
[501, 521],
[452, 559],
[450, 560],
[391, 584],
[390, 584],
[372, 590],
[370, 590],
[305, 596],
[302, 596],
[224, 581],
[221, 580],
[164, 553],
[162, 551],
[114, 509],
[112, 507],
[111, 503],
[112, 498],
[114, 496],
[146, 468],
[149, 466],
[154, 466]])], 'text_det_params': {'limit_side_len': 736, 'limit_type': 'min', 'thresh': 0.2, 'box_thresh': 0.6, 'unclip_ratio': 0.5}, 'text_type': 'seal', 'textline_orientation_angles': [-1, -1, -1, -1], 'text_rec_score_thresh': 0, 'rec_texts': ['夊æ´Ĩååįŧåč´¸æéå
Ŧå¸', 'åįĨ¨ä¸į¨įĢ ', 'åįšįŠ', '5263647368706'], 'rec_scores': [0.9934046268463135, 0.9999403953552246, 0.998250424861908, 0.9913849234580994], 'rec_polys': [array([[320, 38],
[479, 92],
[483, 94],
[486, 97],
[579, 226],
[582, 230],
[582, 235],
[584, 383],
[584, 388],
[582, 392],
[578, 396],
[573, 398],
[566, 398],
[502, 380],
[497, 377],
[494, 374],
[491, 369],
[491, 366],
[488, 259],
[424, 172],
[318, 136],
[251, 154],
[200, 174],
[137, 260],
[133, 366],
[132, 370],
[130, 375],
[126, 378],
[123, 380],
[ 60, 398],
[ 55, 398],
[ 49, 397],
[ 45, 394],
[ 43, 390],
[ 41, 383],
[ 43, 236],
[ 44, 230],
[ 45, 227],
[141, 96],
[144, 93],
[148, 90],
[311, 38],
[315, 38]]), array([[461, 347],
[465, 350],
[468, 354],
[470, 360],
[470, 425],
[469, 429],
[467, 433],
[462, 437],
[456, 439],
[169, 439],
[165, 439],
[160, 436],
[157, 432],
[155, 426],
[154, 360],
[155, 356],
[158, 352],
[161, 348],
[168, 346],
[456, 346]]), array([[439, 445],
[441, 447],
[443, 451],
[444, 453],
[444, 497],
[443, 502],
[440, 504],
[437, 506],
[434, 507],
[189, 505],
[184, 504],
[182, 502],
[180, 498],
[179, 496],
[181, 453],
[182, 449],
[184, 446],
[188, 444],
[434, 444]]), array([[158, 468],
[199, 502],
[242, 522],
[299, 534],
[339, 532],
[373, 526],
[417, 508],
[459, 475],
[462, 474],
[467, 474],
[472, 476],
[502, 507],
[503, 510],
[504, 515],
[503, 518],
[501, 521],
[452, 559],
[450, 560],
[391, 584],
[390, 584],
[372, 590],
[370, 590],
[305, 596],
[302, 596],
[224, 581],
[221, 580],
[164, 553],
[162, 551],
[114, 509],
[112, 507],
[111, 503],
[112, 498],
[114, 496],
[146, 468],
[149, 466],
[154, 466]])], 'rec_boxes': array([], dtype=float64)}]}}
Computer Vision Pipelines CLI
paddlex --pipeline image_classification --input https://paddle-model-ecology.bj.bcebos.com/paddlex/imgs/demo_image/general_image_classification_001.jpg --device gpu:0
What's the result
{'res': {'input_path': 'general_image_classification_001.jpg', 'page_index': None, 'class_ids': array([296, 170, 356, 258, 248], dtype=int32), 'scores': array([0.62736, 0.03752, 0.03256, 0.0323 , 0.03194], dtype=float32), 'label_names': ['ice bear, polar bear, Ursus Maritimus, Thalarctos maritimus', 'Irish wolfhound', 'weasel', 'Samoyed, Samoyede', 'Eskimo dog, husky']}}
paddlex --pipeline object_detection \
--input https://paddle-model-ecology.bj.bcebos.com/paddlex/imgs/demo_image/general_object_detection_002.png \
--threshold 0.5 \
--save_path ./output/ \
--device gpu:0
What's the result
{'res': {'input_path': 'general_object_detection_002.png', 'page_index': None, 'boxes': [{'cls_id': 49, 'label': 'orange', 'score': 0.8188614249229431, 'coordinate': [661.3518, 93.05823, 870.75903, 305.93713]}, {'cls_id': 47, 'label': 'apple', 'score': 0.7745078206062317, 'coordinate': [76.80911, 274.74905, 330.5422, 520.0428]}, {'cls_id': 47, 'label': 'apple', 'score': 0.7271787524223328, 'coordinate': [285.32645, 94.3175, 469.73645, 297.40344]}, {'cls_id': 46, 'label': 'banana', 'score': 0.5576589703559875, 'coordinate': [310.8041, 361.43625, 685.1869, 712.59155]}, {'cls_id': 47, 'label': 'apple', 'score': 0.5490103363990784, 'coordinate': [764.6252, 285.76096, 924.8153, 440.92892]}, {'cls_id': 47, 'label': 'apple', 'score': 0.515821635723114, 'coordinate': [853.9831, 169.41423, 987.803, 303.58615]}, {'cls_id': 60, 'label': 'dining table', 'score': 0.514293372631073, 'coordinate': [0.53089714, 0.32445717, 1072.9534, 720]}, {'cls_id': 47, 'label': 'apple', 'score': 0.510750949382782, 'coordinate': [57.368027, 23.455347, 213.39601, 176.45612]}]}}
paddlex --pipeline instance_segmentation \
--input https://paddle-model-ecology.bj.bcebos.com/paddlex/imgs/demo_image/general_instance_segmentation_004.png \
--threshold 0.5 \
--save_path ./output \
--device gpu:0
What's the result
{'res': {'input_path': 'general_instance_segmentation_004.png', 'page_index': None, 'boxes': [{'cls_id': 0, 'label': 'person', 'score': 0.8695873022079468, 'coordinate': [339.83426, 0, 639.8651, 575.22003]}, {'cls_id': 0, 'label': 'person', 'score': 0.8572642803192139, 'coordinate': [0.09976959, 0, 195.07274, 575.358]}, {'cls_id': 0, 'label': 'person', 'score': 0.8201770186424255, 'coordinate': [88.24664, 113.422424, 401.23077, 574.70197]}, {'cls_id': 0, 'label': 'person', 'score': 0.7110118269920349, 'coordinate': [522.54065, 21.457964, 767.5007, 574.2464]}, {'cls_id': 27, 'label': 'tie', 'score': 0.5543721914291382, 'coordinate': [247.38776, 312.4094, 355.2685, 574.1264]}], 'masks': '...'}}
paddlex --pipeline small_object_detection \
--input https://paddle-model-ecology.bj.bcebos.com/paddlex/imgs/demo_image/small_object_detection.jpg \
--threshold 0.5 \
--save_path ./output \
--device gpu:0 \
What's the result
{'res': {'input_path': 'small_object_detection.jpg', 'page_index': None, 'boxes': [{'cls_id': 0, 'label': 'pedestrian', 'score': 0.8182944655418396, 'coordinate': [203.60147, 701.3809, 224.2007, 743.8429]}, {'cls_id': 0, 'label': 'pedestrian', 'score': 0.8150849342346191, 'coordinate': [185.01398, 710.8665, 201.76335, 744.9308]}, {'cls_id': 0, 'label': 'pedestrian', 'score': 0.7748839259147644, 'coordinate': [295.1978, 500.2161, 309.33438, 532.0253]}, {'cls_id': 0, 'label': 'pedestrian', 'score': 0.7688254714012146, 'coordinate': [851.5233, 436.13293, 863.2146, 466.8981]}, {'cls_id': 0, 'label': 'pedestrian', 'score': 0.689735472202301, 'coordinate': [802.1584, 460.10693, 815.6586, 488.85086]}, {'cls_id': 0, 'label': 'pedestrian', 'score': 0.6697502136230469, 'coordinate': [479.947, 309.43323, 489.1534, 332.5485]}, ...]}}
paddlex --pipeline human_keypoint_detection \
--input https://paddle-model-ecology.bj.bcebos.com/paddlex/imgs/demo_image/keypoint_detection_001.jpg \
--det_threshold 0.5 \
--save_path ./output/ \
--device gpu:0
What's the result
{'res': {'input_path': 'keypoint_detection_001.jpg', 'boxes': [{'coordinate': [325.65088, 74.46718, 391.5512, 209.46529], 'det_score': 0.9316536784172058, 'keypoints': array([[351.6419 , 84.80058 , 0.79337054],
[353.9377 , 82.47209 , 0.7778817 ],
[349.12946 , 83.09801 , 0.7885327 ],
[359.24466 , 83.369225 , 0.80503 ],
[347.46167 , 84.1535 , 0.8710606 ],
[368.82172 , 101.33514 , 0.88625187],
[339.8064 , 99.65537 , 0.8432633 ],
[371.2092 , 123.35563 , 0.7728337 ],
[337.78214 , 121.36371 , 0.9310819 ],
[368.81366 , 142.71593 , 0.79723483],
[337.53455 , 139.85892 , 0.877297 ],
[363.0265 , 141.82988 , 0.7964988 ],
[345.3075 , 141.98972 , 0.7532031 ],
[374.60806 , 171.42578 , 0.7530604 ],
[339.11694 , 167.98814 , 0.7255032 ],
[382.67047 , 197.82553 , 0.73685765],
[336.79745 , 196.5194 , 0.626142 ]], dtype=float32), 'kpt_score': 0.7961825}, {'coordinate': [271.96713, 69.02892, 336.77832, 217.54662], 'det_score': 0.9304604530334473, 'keypoints': array([[294.48553 , 84.144104 , 0.74851245],
[297.09854 , 80.97825 , 0.7341483 ],
[292.39313 , 81.7721 , 0.74603605],
[302.3231 , 81.528275 , 0.7586238 ],
[290.6292 , 83.26544 , 0.7514231 ],
[313.32928 , 98.40588 , 0.83778954],
[286.23532 , 101.702194 , 0.91927457],
[321.99515 , 120.05991 , 0.90197486],
[282.39294 , 122.16547 , 0.74502975],
[327.164 , 141.25995 , 0.8172762 ],
[279.1632 , 133.16023 , 0.59161717],
[311.02557 , 142.31526 , 0.82111686],
[294.72357 , 143.42067 , 0.71559554],
[313.98828 , 174.17151 , 0.7495116 ],
[291.76605 , 174.39961 , 0.7645517 ],
[321.4924 , 202.4499 , 0.7817023 ],
[293.70663 , 204.9227 , 0.72405976]], dtype=float32), 'kpt_score': 0.77107316}, {'coordinate': [293.55933, 188.65804, 419.47382, 305.4712], 'det_score': 0.9179267883300781, 'keypoints': array([[3.3565637e+02, 2.0941801e+02, 8.1438643e-01],
[3.3636591e+02, 2.0724442e+02, 7.7529407e-01],
[3.3486487e+02, 2.0653752e+02, 8.3719862e-01],
[3.4387805e+02, 2.0405179e+02, 7.9793924e-01],
[3.4104437e+02, 2.0354083e+02, 6.7090714e-01],
[3.5167136e+02, 2.1253050e+02, 5.9533423e-01],
[3.5493774e+02, 2.1316977e+02, 5.1632988e-01],
[3.2814764e+02, 2.1943013e+02, 5.3697169e-01],
[3.2577945e+02, 2.2027420e+02, 1.6555195e-01],
[3.1541614e+02, 2.2199020e+02, 5.2568728e-01],
[3.1139435e+02, 2.2925937e+02, 2.2075935e-01],
[3.8441351e+02, 2.4341478e+02, 6.4083064e-01],
[3.8714008e+02, 2.4532764e+02, 6.4894527e-01],
[3.5143246e+02, 2.5615021e+02, 7.7424920e-01],
[3.7133820e+02, 2.7552402e+02, 5.8704698e-01],
[3.6274625e+02, 2.8303183e+02, 6.1670756e-01],
[4.0358893e+02, 2.9351334e+02, 4.2383862e-01]], dtype=float32), 'kpt_score': 0.5969399}, {'coordinate': [238.98825, 182.67476, 372.81628, 307.61395], 'det_score': 0.914400041103363, 'keypoints': array([[282.9012 , 208.31485 , 0.6685285 ],
[282.95908 , 204.36131 , 0.66104335],
[280.90683 , 204.54018 , 0.7281709 ],
[274.7831 , 204.04141 , 0.54541856],
[270.97324 , 203.04889 , 0.73486483],
[269.43472 , 217.63014 , 0.6707946 ],
[256.871 , 216.546 , 0.89603853],
[277.03226 , 238.2196 , 0.4412233 ],
[262.29578 , 241.33434 , 0.791063 ],
[292.90753 , 251.69914 , 0.4993091 ],
[285.6907 , 252.71925 , 0.7215052 ],
[279.36578 , 261.8949 , 0.6626504 ],
[270.43402 , 268.07068 , 0.80625033],
[311.96924 , 261.36716 , 0.67315185],
[309.32407 , 262.97354 , 0.72746485],
[345.22446 , 285.02255 , 0.60142016],
[334.69235 , 291.57108 , 0.7674925 ]], dtype=float32), 'kpt_score': 0.6821406}, {'coordinate': [66.23172, 93.531204, 124.48463, 217.99655], 'det_score': 0.9086756110191345, 'keypoints': array([[ 91.04524 , 108.79487 , 0.8234256 ],
[ 92.67917 , 106.63517 , 0.79848343],
[ 88.41122 , 106.8017 , 0.8122996 ],
[ 95.353096 , 106.96488 , 0.85210425],
[ 84.35098 , 107.85205 , 0.971826 ],
[ 99.92103 , 119.87272 , 0.853371 ],
[ 79.69138 , 121.08684 , 0.8854925 ],
[103.019554 , 135.00996 , 0.73513967],
[ 72.38997 , 136.8782 , 0.7727014 ],
[104.561935 , 146.01869 , 0.8377464 ],
[ 72.70636 , 151.44576 , 0.67577386],
[ 98.69484 , 151.30742 , 0.8381225 ],
[ 85.946 , 152.07056 , 0.7904873 ],
[106.64397 , 175.77159 , 0.8179414 ],
[ 84.6963 , 178.4353 , 0.8094256 ],
[111.30463 , 201.2306 , 0.74394226],
[ 80.08708 , 204.05814 , 0.8457697 ]], dtype=float32), 'kpt_score': 0.8155325}, {'coordinate': [160.1294, 78.35935, 212.01868, 153.2241], 'det_score': 0.8295672535896301, 'keypoints': array([[1.89240387e+02, 9.08055573e+01, 7.36447990e-01],
[1.91318649e+02, 8.84640198e+01, 7.86390483e-01],
[1.87943207e+02, 8.88532104e+01, 8.23230743e-01],
[1.95832245e+02, 8.76751480e+01, 6.76276207e-01],
[1.86741409e+02, 8.96744080e+01, 7.87400603e-01],
[2.04019852e+02, 9.83068924e+01, 7.34004617e-01],
[1.85355087e+02, 9.81262970e+01, 6.23330474e-01],
[2.01501678e+02, 1.12709480e+02, 2.93740422e-01],
[1.80446320e+02, 1.11967369e+02, 5.50001860e-01],
[1.95137482e+02, 9.73322601e+01, 4.24658984e-01],
[1.74287552e+02, 1.21760696e+02, 3.51236403e-01],
[1.97997589e+02, 1.24219963e+02, 3.45360219e-01],
[1.83250824e+02, 1.22610085e+02, 4.38733459e-01],
[1.96233871e+02, 1.22864418e+02, 5.36903977e-01],
[1.66795364e+02, 1.25634903e+02, 3.78726840e-01],
[1.80727753e+02, 1.42604034e+02, 2.78717279e-01],
[1.75880920e+02, 1.41181213e+02, 1.70833692e-01]], dtype=float32), 'kpt_score': 0.5256467}, {'coordinate': [52.482475, 59.36664, 96.47121, 135.45993], 'det_score': 0.7726763486862183, 'keypoints': array([[ 73.98227 , 74.01257 , 0.71940714],
[ 75.44208 , 71.73432 , 0.6955297 ],
[ 72.20365 , 71.9637 , 0.6138198 ],
[ 77.7856 , 71.665825 , 0.73568064],
[ 69.342285 , 72.25549 , 0.6311799 ],
[ 83.1019 , 77.65522 , 0.7037722 ],
[ 64.89729 , 78.846565 , 0.56623787],
[ 85.16928 , 88.88764 , 0.5665537 ],
[ 61.65655 , 89.35312 , 0.4463089 ],
[ 80.01986 , 91.51777 , 0.30305162],
[ 70.90767 , 89.90153 , 0.48063472],
[ 78.70658 , 97.33488 , 0.39359188],
[ 68.3219 , 97.67902 , 0.41903985],
[ 80.69448 , 109.193985 , 0.14496553],
[ 65.57641 , 105.08109 , 0.27744702],
[ 79.44859 , 122.69015 , 0.17710638],
[ 64.03736 , 120.170425 , 0.46565098]], dtype=float32), 'kpt_score': 0.4905869}, {'coordinate': [7.081953, 80.3705, 46.81927, 161.72012], 'det_score': 0.6587498784065247, 'keypoints': array([[ 29.51531 , 91.49908 , 0.75517464],
[ 31.225754 , 89.82169 , 0.7765606 ],
[ 27.376017 , 89.71614 , 0.80448 ],
[ 33.515877 , 90.82257 , 0.7093001 ],
[ 23.521307 , 90.84212 , 0.777707 ],
[ 37.539314 , 101.381516 , 0.6913692 ],
[ 18.340288 , 102.41546 , 0.7203535 ],
[ 39.826218 , 113.37301 , 0.5913918 ],
[ 16.857304 , 115.10882 , 0.5492331 ],
[ 28.826103 , 121.861855 , 0.39205936],
[ 22.47133 , 120.69003 , 0.6120081 ],
[ 34.177963 , 126.15756 , 0.5601723 ],
[ 21.39047 , 125.30078 , 0.5064371 ],
[ 27.961575 , 133.33154 , 0.54826814],
[ 22.303364 , 129.8608 , 0.2293001 ],
[ 31.242027 , 153.047 , 0.36292207],
[ 21.80127 , 153.78947 , 0.30531448]], dtype=float32), 'kpt_score': 0.58188534}, {'coordinate': [126.131096, 30.263107, 168.5759, 134.09885], 'det_score': 0.6441988348960876, 'keypoints': array([[149.89236 , 43.87846 , 0.75441885],
[151.99484 , 41.95912 , 0.82070917],
[148.18002 , 41.775055 , 0.8453321 ],
[155.37967 , 42.06968 , 0.83349544],
[145.38167 , 41.69159 , 0.8233239 ],
[159.26329 , 53.284737 , 0.86246717],
[142.35178 , 51.206886 , 0.6940705 ],
[157.3975 , 71.31917 , 0.7624757 ],
[136.59795 , 66.40522 , 0.55612797],
[142.90988 , 78.28269 , 0.779243 ],
[135.43607 , 73.9765 , 0.5737738 ],
[155.7851 , 82.44225 , 0.6966109 ],
[143.4588 , 80.91763 , 0.60589534],
[153.45274 , 102.84818 , 0.62720954],
[131.59738 , 87.54947 , 0.4976839 ],
[155.56401 , 125.58888 , 0.5414401 ],
[139.57607 , 122.08866 , 0.26570275]], dtype=float32), 'kpt_score': 0.67882234}, {'coordinate': [112.50212, 64.127, 150.35353, 125.85529], 'det_score': 0.5013833045959473, 'keypoints': array([[1.35197662e+02, 7.29378281e+01, 5.58694899e-01],
[1.36285202e+02, 7.16439133e+01, 6.38598502e-01],
[1.33776855e+02, 7.16437454e+01, 6.36756659e-01],
[1.37833389e+02, 7.24015121e+01, 4.13749218e-01],
[1.31340057e+02, 7.30362549e+01, 5.70683837e-01],
[1.42542435e+02, 8.28875885e+01, 2.30803847e-01],
[1.29773300e+02, 8.52729874e+01, 4.94463116e-01],
[1.41332916e+02, 9.43963928e+01, 9.36751068e-02],
[1.28858521e+02, 9.95147858e+01, 2.72373617e-01],
[1.44981277e+02, 7.83604965e+01, 8.68032947e-02],
[1.34379593e+02, 8.23366165e+01, 1.67876005e-01],
[1.37895874e+02, 1.08476562e+02, 1.58305198e-01],
[1.30837265e+02, 1.07525513e+02, 1.45044222e-01],
[1.31290604e+02, 1.02961494e+02, 7.68775940e-02],
[1.17951675e+02, 1.07433502e+02, 2.09531561e-01],
[1.29175934e+02, 1.14402641e+02, 1.46551579e-01],
[1.27901909e+02, 1.16773926e+02, 2.08665460e-01]], dtype=float32), 'kpt_score': 0.3005561}]}}
paddlex --pipeline open_vocabulary_segmentation \
--input https://paddle-model-ecology.bj.bcebos.com/paddlex/imgs/demo_image/open_vocabulary_segmentation.jpg \
--prompt_type box \
--prompt "[[112.9,118.4,513.8,382.1],[4.6,263.6,92.2,336.6],[592.4,260.9,607.2,294.2]]" \
--save_path ./output \
--device gpu:0
What's the result
{'res': {'input_path': 'open_vocabulary_segmentation.jpg', 'prompts': {'box_prompt': [[112.9, 118.4, 513.8, 382.1], [4.6, 263.6, 92.2, 336.6], [592.4, 260.9, 607.2, 294.2]]}, 'masks': '...', 'mask_infos': [{'label': 'box_prompt', 'prompt': [112.9, 118.4, 513.8, 382.1]}, {'label': 'box_prompt', 'prompt': [4.6, 263.6, 92.2, 336.6]}, {'label': 'box_prompt', 'prompt': [592.4, 260.9, 607.2, 294.2]}]}}
paddlex --pipeline open_vocabulary_detection \
--input https://paddle-model-ecology.bj.bcebos.com/paddlex/imgs/demo_image/open_vocabulary_detection.jpg \
--prompt "bus . walking man . rearview mirror ." \
--thresholds "{'text_threshold': 0.25, 'box_threshold': 0.3}" \
--save_path ./output \
--device gpu:0
What's the result
{'res': {'input_path': 'open_vocabulary_detection.jpg', 'page_index': None, 'boxes': [{'coordinate': [112.10542297363281, 117.93667602539062, 514.35693359375, 382.10150146484375], 'label': 'bus', 'score': 0.9348853230476379}, {'coordinate': [264.1828918457031, 162.6674346923828, 286.8844909667969, 201.86187744140625], 'label': 'rearview mirror', 'score': 0.6022508144378662}, {'coordinate': [606.1133422851562, 254.4973907470703, 622.56982421875, 293.7867126464844], 'label': 'walking man', 'score': 0.4384709894657135}, {'coordinate': [591.8192138671875, 260.2451171875, 607.3953247070312, 294.2210388183594], 'label': 'man', 'score': 0.3573091924190521}]}}
paddlex --pipeline pedestrian_attribute_recognition --input https://paddle-model-ecology.bj.bcebos.com/paddlex/imgs/demo_image/pedestrian_attribute_002.jpg --device gpu:0
What's the result
{'res': {'input_path': 'pedestrian_attribute_002.jpg', 'boxes': [{'labels': ['Trousers(éŋčŖ¤)', 'Age18-60(åš´éžå¨18-60å˛äšé´)', 'LongCoat(éŋå¤åĨ)', 'Side(䞧éĸ)'], 'cls_scores': array([0.99965, 0.99963, 0.98866, 0.9624 ]), 'det_score': 0.9795178771018982, 'coordinate': [87.24581, 322.5872, 546.2697, 1039.9852]}, {'labels': ['Trousers(éŋčŖ¤)', 'LongCoat(éŋå¤åĨ)', 'Front(éĸæå)', 'Age18-60(åš´éžå¨18-60å˛äšé´)'], 'cls_scores': array([0.99996, 0.99872, 0.93379, 0.71614]), 'det_score': 0.967143177986145, 'coordinate': [737.91626, 306.287, 1150.5961, 1034.2979]}, {'labels': ['Trousers(éŋčŖ¤)', 'LongCoat(éŋå¤åĨ)', 'Age18-60(åš´éžå¨18-60å˛äšé´)', 'Side(䞧éĸ)'], 'cls_scores': array([0.99996, 0.99514, 0.98726, 0.96224]), 'det_score': 0.9645745754241943, 'coordinate': [399.45944, 281.9107, 869.5312, 1038.9962]}]}}
paddlex --pipeline vehicle_attribute_recognition --input https://paddle-model-ecology.bj.bcebos.com/paddlex/imgs/demo_image/vehicle_attribute_002.jpg --device gpu:0
What's the result
{'res': {'input_path': 'vehicle_attribute_002.jpg', 'boxes': [{'labels': ['red(įēĸč˛)', 'sedan(čŊŋčŊĻ)'], 'cls_scores': array([0.96375, 0.94025]), 'det_score': 0.9774094820022583, 'coordinate': [196.32553, 302.3847, 639.3131, 655.57904]}, {'labels': ['suv(SUV)', 'brown(æŖč˛)'], 'cls_scores': array([0.99968, 0.99317]), 'det_score': 0.9705657958984375, 'coordinate': [769.4419, 278.8417, 1401.0217, 641.3569]}]}}
paddlex --pipeline rotated_object_detection \
--input https://paddle-model-ecology.bj.bcebos.com/paddlex/imgs/demo_image/rotated_object_detection_001.png \
--threshold 0.5 \
--save_path ./output \
--device gpu:0
What's the result
{'res': {'input_path': 'rotated_object_detection_001.png', 'page_index': None, 'boxes': [{'cls_id': 4, 'label': 'small-vehicle', 'score': 0.7409099340438843, 'coordinate': [92.88687, 763.1569, 85.163124, 749.5868, 116.07975, 731.99414, 123.8035, 745.5643]}, {'cls_id': 4, 'label': 'small-vehicle', 'score': 0.7393015623092651, 'coordinate': [348.2332, 177.55974, 332.77704, 150.24973, 345.2183, 143.21028, 360.67444, 170.5203]}, {'cls_id': 11, 'label': 'roundabout', 'score': 0.8101699948310852, 'coordinate': [537.1732, 695.5475, 204.4297, 612.9735, 286.71338, 281.48022, 619.4569, 364.05426]}]}}
Time Series-related CLI
paddlex --pipeline ts_forecast --input https://paddle-model-ecology.bj.bcebos.com/paddlex/ts/demo_ts/ts_fc.csv --save_path ./output --device gpu:0
What's the result
{'input_path': 'ts_fc.csv', 'forecast': OT
date
2018-06-26 20:00:00 9.586131
2018-06-26 21:00:00 9.379762
2018-06-26 22:00:00 9.252275
2018-06-26 23:00:00 9.249993
2018-06-27 00:00:00 9.164998
... ...
2018-06-30 15:00:00 8.830340
2018-06-30 16:00:00 9.291553
2018-06-30 17:00:00 9.097666
2018-06-30 18:00:00 8.905430
2018-06-30 19:00:00 8.993793
[96 rows x 1 columns]}
Speech-related Pipelines CLI
paddlex --pipeline multilingual_speech_recognition \
--input https://paddlespeech.bj.bcebos.com/PaddleAudio/zh.wav \
--save_path ./output \
--device gpu:0
What's the result
{'input_path': 'zh.wav', 'result': {'text': 'æ莤ä¸ēčˇæĨæéčĻįå°ąæ¯įģæå¸ĻæĨäēčēĢäŊåĨåēˇ', 'segments': [{'id': 0, 'seek': 0, 'start': 0.0, 'end': 2.0, 'text': 'æ莤ä¸ēčˇæĨæéčĻįå°ąæ¯', 'tokens': [50364, 1654, 7422, 97, 13992, 32585, 31429, 8661, 24928, 1546, 5620, 50464, 50464, 49076, 4845, 99, 34912, 19847, 29485, 44201, 6346, 115, 50564], 'temperature': 0, 'avg_logprob': -0.22779104113578796, 'compression_ratio': 0.28169014084507044, 'no_speech_prob': 0.026114309206604958}, {'id': 1, 'seek': 200, 'start': 2.0, 'end': 31.0, 'text': 'įģæå¸ĻæĨäēčēĢäŊåĨåēˇ', 'tokens': [50364, 49076, 4845, 99, 34912, 19847, 29485, 44201, 6346, 115, 51814], 'temperature': 0, 'avg_logprob': -0.21976988017559052, 'compression_ratio': 0.23684210526315788, 'no_speech_prob': 0.009023111313581467}], 'language': 'zh'}}
Video-related Pipelines CLI
paddlex --pipeline video_detection --input https://paddle-model-ecology.bj.bcebos.com/paddlex/videos/demo_video/HorseRiding.avi --device gpu:0 --save_path output
What's the result
{'input_path': 'HorseRiding.avi', 'result': [[[[110, 40, 170, 171], 0.8385784886274905, 'HorseRiding']], [[[112, 31, 168, 167], 0.8587647461352432, 'HorseRiding']], [[[106, 28, 164, 165], 0.8579590929730969, 'HorseRiding']], [[[106, 24, 165, 171], 0.8743957465404151, 'HorseRiding']], [[[107, 22, 165, 172], 0.8488322619908999, 'HorseRiding']], [[[112, 22, 173, 171], 0.8446755521458691, 'HorseRiding']], [[[115, 23, 177, 176], 0.8454028365262367, 'HorseRiding']], [[[117, 22, 178, 179], 0.8484261880748285, 'HorseRiding']], [[[117, 22, 181, 181], 0.8319480115446183, 'HorseRiding']], [[[117, 39, 182, 183], 0.820551099084625, 'HorseRiding']], [[[117, 41, 183, 185], 0.8202395831914338, 'HorseRiding']], [[[121, 47, 185, 190], 0.8261058921745246, 'HorseRiding']], [[[123, 46, 188, 196], 0.8307278306829033, 'HorseRiding']], [[[125, 44, 189, 197], 0.8259781361122833, 'HorseRiding']], [[[128, 47, 191, 195], 0.8227593229866699, 'HorseRiding']], [[[127, 44, 192, 193], 0.8205373129456817, 'HorseRiding']], [[[129, 39, 192, 185], 0.8223318812628619, 'HorseRiding']], [[[127, 31, 196, 179], 0.8501208612019866, 'HorseRiding']], [[[128, 22, 193, 171], 0.8315708410681566, 'HorseRiding']], [[[130, 22, 192, 169], 0.8318588228062005, 'HorseRiding']], [[[132, 18, 193, 170], 0.8310494469100611, 'HorseRiding']], [[[132, 18, 194, 172], 0.8302132445350239, 'HorseRiding']], [[[133, 18, 194, 176], 0.8339063714162727, 'HorseRiding']], [[[134, 26, 200, 183], 0.8365876380675275, 'HorseRiding']], [[[133, 16, 198, 182], 0.8395230321418268, 'HorseRiding']], [[[133, 17, 199, 184], 0.8198139782724922, 'HorseRiding']], [[[140, 28, 204, 189], 0.8344166596681291, 'HorseRiding']], [[[139, 27, 204, 187], 0.8412694521771158, 'HorseRiding']], [[[139, 28, 204, 185], 0.8500098862888805, 'HorseRiding']], [[[135, 19, 199, 179], 0.8506627974981384, 'HorseRiding']], [[[132, 15, 201, 178], 0.8495054272547193, 'HorseRiding']], [[[136, 14, 199, 173], 0.8451630721500223, 'HorseRiding']], [[[136, 12, 200, 167], 0.8366456814214907, 'HorseRiding']], [[[133, 8, 200, 168], 0.8457252233401213, 'HorseRiding']], [[[131, 7, 197, 162], 0.8400586356358062, 'HorseRiding']], [[[131, 8, 195, 163], 0.8320492682901985, 'HorseRiding']], [[[129, 4, 194, 159], 0.8298043752822792, 'HorseRiding']], [[[127, 5, 194, 162], 0.8348390851948722, 'HorseRiding']], [[[125, 7, 190, 164], 0.8299688814865505, 'HorseRiding']], [[[125, 6, 191, 164], 0.8303107088154711, 'HorseRiding']], [[[123, 8, 190, 168], 0.8348342187965798, 'HorseRiding']], [[[125, 14, 189, 170], 0.8356523950497134, 'HorseRiding']], [[[127, 18, 191, 171], 0.8392671764931521, 'HorseRiding']], [[[127, 30, 193, 178], 0.8441704160826191, 'HorseRiding']], [[[128, 18, 190, 181], 0.8438125326146775, 'HorseRiding']], [[[128, 12, 189, 186], 0.8390128962093542, 'HorseRiding']], [[[129, 15, 190, 185], 0.8471056476788448, 'HorseRiding']], [[[129, 16, 191, 184], 0.8536121834731034, 'HorseRiding']], [[[129, 16, 192, 185], 0.8488154629800881, 'HorseRiding']], [[[128, 15, 194, 184], 0.8417711698421471, 'HorseRiding']], [[[129, 13, 195, 187], 0.8412510238991473, 'HorseRiding']], [[[129, 14, 191, 187], 0.8404350980083457, 'HorseRiding']], [[[129, 13, 190, 189], 0.8382891279858882, 'HorseRiding']], [[[129, 11, 187, 191], 0.8318282305903217, 'HorseRiding']], [[[128, 8, 188, 195], 0.8043430817880264, 'HorseRiding']], [[[131, 25, 193, 199], 0.826184954516826, 'HorseRiding']], [[[124, 35, 191, 203], 0.8270462809459467, 'HorseRiding']], [[[121, 38, 191, 206], 0.8350931715324705, 'HorseRiding']], [[[124, 41, 195, 212], 0.8331239341053625, 'HorseRiding']], [[[128, 42, 194, 211], 0.8343046153103657, 'HorseRiding']], [[[131, 40, 192, 203], 0.8309784496027532, 'HorseRiding']], [[[130, 32, 195, 202], 0.8316640083647542, 'HorseRiding']], [[[135, 30, 196, 197], 0.8272172409555161, 'HorseRiding']], [[[131, 16, 197, 186], 0.8388410406147955, 'HorseRiding']], [[[134, 15, 202, 184], 0.8485738297037244, 'HorseRiding']], [[[136, 15, 209, 182], 0.8529430205135213, 'HorseRiding']], [[[134, 13, 218, 182], 0.8601191479922718, 'HorseRiding']], [[[144, 10, 213, 183], 0.8591963099263467, 'HorseRiding']], [[[151, 12, 219, 184], 0.8617965108346937, 'HorseRiding']], [[[151, 10, 220, 186], 0.8631923599955371, 'HorseRiding']], [[[145, 10, 216, 186], 0.8800860885204287, 'HorseRiding']], [[[144, 10, 216, 186], 0.8858840451538228, 'HorseRiding']], [[[146, 11, 214, 190], 0.8773644144886106, 'HorseRiding']], [[[145, 24, 214, 193], 0.8605544385867248, 'HorseRiding']], [[[146, 23, 214, 193], 0.8727294882672254, 'HorseRiding']], [[[148, 22, 212, 198], 0.8713131467067079, 'HorseRiding']], [[[146, 29, 213, 197], 0.8579099324651196, 'HorseRiding']], [[[154, 29, 217, 199], 0.8547794072847914, 'HorseRiding']], [[[151, 26, 217, 203], 0.8641733722316758, 'HorseRiding']], [[[146, 24, 212, 199], 0.8613466257602624, 'HorseRiding']], [[[142, 25, 210, 194], 0.8492670944810214, 'HorseRiding']], [[[134, 24, 204, 192], 0.8428117300203049, 'HorseRiding']], [[[136, 25, 204, 189], 0.8486779356971397, 'HorseRiding']], [[[127, 21, 199, 179], 0.8513896296400709, 'HorseRiding']], [[[125, 10, 192, 192], 0.8510201771386576, 'HorseRiding']], [[[124, 8, 191, 192], 0.8493999019508465, 'HorseRiding']], [[[121, 8, 192, 193], 0.8487097098892171, 'HorseRiding']], [[[119, 6, 187, 193], 0.847543279648022, 'HorseRiding']], [[[118, 12, 190, 190], 0.8503535936620565, 'HorseRiding']], [[[122, 22, 189, 194], 0.8427901493276977, 'HorseRiding']], [[[118, 24, 188, 195], 0.8418835400352087, 'HorseRiding']], [[[120, 25, 188, 205], 0.847192725785284, 'HorseRiding']], [[[122, 25, 189, 207], 0.8444105420674433, 'HorseRiding']], [[[120, 23, 189, 208], 0.8470784016639392, 'HorseRiding']], [[[121, 23, 188, 205], 0.843428111269418, 'HorseRiding']], [[[117, 23, 186, 206], 0.8420809714166708, 'HorseRiding']], [[[119, 5, 199, 197], 0.8288265053231356, 'HorseRiding']], [[[121, 8, 192, 195], 0.8197548738023599, 'HorseRiding']]]}
đ Python Usage¶
A few lines of code can complete the quick inference of the pipeline, with a unified Python script format as follows:
from paddlex import create_pipeline
pipeline = create_pipeline(pipeline=[pipeline name])
output = pipeline.predict([input image name])
for res in output:
res.print()
res.save_to_img("./output/")
res.save_to_json("./output/")
create_pipeline()
instantiates the pipeline object- Pass in the image and call the
predict
method of the pipeline object for inference prediction - Process the prediction results
OCR-related Python
from paddlex import create_pipeline
pipeline = create_pipeline(pipeline="OCR")
output = pipeline.predict(
input="./general_ocr_002.png",
use_doc_orientation_classify=False,
use_doc_unwarping=False,
use_textline_orientation=False,
)
for res in output:
res.print()
res.save_to_img(save_path="./output/")
res.save_to_json(save_path="./output/")
from paddlex import create_pipeline
pipeline = create_pipeline(pipeline_name="table_recognition")
output = pipeline.predict(
input="table_recognition.jpg",
use_doc_orientation_classify=False,
use_doc_unwarping=False,
)
for res in output:
res.print()
res.save_to_img("./output/")
res.save_to_xlsx("./output/")
res.save_to_html("./output/")
res.save_to_json("./output/")
from paddlex import create_pipeline
pipeline = create_pipeline(pipeline_name="table_recognition_v2")
output = pipeline.predict(
input="table_recognition_v2.jpg",
use_doc_orientation_classify=False,
use_doc_unwarping=False,
)
for res in output:
res.print()
res.save_to_img("./output/")
res.save_to_xlsx("./output/")
res.save_to_html("./output/")
res.save_to_json("./output/")
from paddlex import create_pipeline
pipeline = create_pipeline(pipeline="layout_parsing")
output = pipeline.predict(
input="./layout_parsing_demo.png",
use_doc_orientation_classify=False,
use_doc_unwarping=False,
use_textline_orientation=False,
)
for res in output:
res.print() ## Print the structured output of the prediction
res.save_to_img(save_path="./output/") ## Save the result in img format
res.save_to_json(save_path="./output/") ## Save the result in json format
res.save_to_xlsx(save_path="./output/") ## Save the result in table format
res.save_to_html(save_path="./output/") ## Save the result in html format
from paddlex import create_pipeline
pipeline = create_pipeline(pipeline="PP-StructureV3")
output = pipeline.predict(
input="./pp_structure_v3_demo.png",
use_doc_orientation_classify=False,
use_doc_unwarping=False,
use_textline_orientation=False,
)
for res in output:
res.print()
res.save_to_json(save_path="output")
res.save_to_markdown(save_path="output")
from paddlex import create_pipeline
pipeline = create_pipeline(pipeline="formula_recognition")
output = pipeline.predict(
input="./general_formula_recognition_001.png",
use_layout_detection=True,
use_doc_orientation_classify=False,
use_doc_unwarping=False,
layout_threshold=0.5,
layout_nms=True,
layout_unclip_ratio=1.0,
layout_merge_bboxes_mode="large"
)
for res in output:
res.print()
res.save_to_img(save_path="./output/")
res.save_to_json(save_path="./output/")
from paddlex import create_pipeline
pipeline = create_pipeline(pipeline="seal_recognition")
output = pipeline.predict(
"seal_text_det.png",
use_doc_orientation_classify=False,
use_doc_unwarping=False,
)
for res in output:
res.print() ## Print the structured output of the prediction
res.save_to_img("./output/") ## Save the visualization result
res.save_to_json("./output/") ## Save the visualization result
from paddlex import create_pipeline
pipeline = create_pipeline(pipeline="doc_preprocessor")
output = pipeline.predict(
input="doc_test_rotated.jpg",
use_doc_orientation_classify=True,
use_doc_unwarping=True,
)
for res in output:
res.print()
res.save_to_img(save_path="./output/")
res.save_to_json(save_path="./output/")
Computer Vision Pipeline Command-Line Usage
from paddlex import create_pipeline
pipeline = create_pipeline(pipeline="image_classification")
output = pipeline.predict("general_image_classification_001.jpg")
for res in output:
res.print() ## Print the structured output of the prediction
res.save_to_img(save_path="./output/") ## Save the visualized result image
res.save_to_json(save_path="./output/") ## Save the structured output of the prediction
from paddlex import create_pipeline
pipeline = create_pipeline(pipeline_name="semantic_segmentation")
output = pipeline.predict(input="general_semantic_segmentation_002.png", target_size = -1)
for res in output:
res.print()
res.save_to_img(save_path="./output/")
res.save_to_json(save_path="./output/")
from paddlex import create_pipeline
pipeline = create_pipeline(pipeline="image_multilabel_classification")
output = pipeline.predict("general_image_classification_001.jpg")
for res in output:
res.print() ## Print the structured output of the prediction
res.save_to_img("./output/") ## Save the visualized result image
res.save_to_json("./output/") ## Save the structured output of the prediction
from paddlex import create_pipeline
pipeline = create_pipeline(pipeline="anomaly_detection")
output = pipeline.predict(input="uad_grid.png")
for res in output:
res.print() ## Print the structured output of the prediction
res.save_to_img(save_path="./output/") ## Save the visualized result image
res.save_to_json(save_path="./output/") ## Save the structured output of the prediction
from paddlex import create_pipeline
pipeline = create_pipeline(pipeline="3d_bev_detection")
output = pipeline.predict("./data/nuscenes_demo/nuscenes_infos_val.pkl")
for res in output:
res.print() ## Print the structured output of the prediction
res.save_to_json("./output/") ## Save the result to a JSON file
from paddlex import create_pipeline
pipeline = create_pipeline(pipeline_name="open_vocabulary_segmentation")
output = pipeline.predict(input="open_vocabulary_segmentation.jpg", prompt_type="box", prompt=[[112.9,118.4,513.8,382.1],[4.6,263.6,92.2,336.6],[592.4,260.9,607.2,294.2]])
for res in output:
res.print()
res.save_to_img(save_path="./output/")
res.save_to_json(save_path="./output/")
from paddlex import create_pipeline
pipeline = create_pipeline(pipeline_name="open_vocabulary_detection")
output = pipeline.predict(input="open_vocabulary_detection.jpg", prompt="bus . walking man . rearview mirror .")
for res in output:
res.print()
res.save_to_img(save_path="./output/")
res.save_to_json(save_path="./output/")
from paddlex import create_pipeline
pipeline = create_pipeline(pipeline="pedestrian_attribute_recognition")
output = pipeline.predict("pedestrian_attribute_002.jpg")
for res in output:
res.print() ## Print the structured output of the prediction
res.save_to_img("./output/") ## Save the visualized result image
res.save_to_json("./output/") ## Save the structured output of the prediction
from paddlex import create_pipeline
pipeline = create_pipeline(pipeline="vehicle_attribute_recognition")
output = pipeline.predict("vehicle_attribute_002.jpg")
for res in output:
res.print() ## Print the structured output of the prediction
res.save_to_img("./output/") ## Save the visualized result image
res.save_to_json("./output/") ## Save the structured output of the prediction
Command Line Usage for Time Series pipelines
from paddlex import create_pipeline
pipeline = create_pipeline(pipeline="ts_forecast")
output = pipeline.predict(input="ts_fc.csv")
for res in output:
res.print() ## Print the structured prediction output
res.save_to_csv(save_path="./output/") ## Save results in CSV format
res.save_to_json(save_path="./output/") ## Save results in JSON format
from paddlex import create_pipeline
pipeline = create_pipeline(pipeline="ts_anomaly_detection")
output = pipeline.predict("ts_ad.csv")
for res in output:
res.print() ## Print the structured prediction output
res.save_to_csv(save_path="./output/") ## Save results in CSV format
res.save_to_json(save_path="./output/") ## Save results in JSON format
from paddlex import create_pipeline
pipeline = create_pipeline(pipeline="ts_classification")
output = pipeline.predict("ts_cls.csv")
for res in output:
res.print() ## Print the structured prediction output
res.save_to_csv(save_path="./output/") ## Save results in CSV format
res.save_to_json(save_path="./output/") ## Save results in JSON format
Command Line Usage for Speech pipelines
Command Line Usage for Video pipelines
from paddlex import create_pipeline
pipeline = create_pipeline(pipeline="video_detection")
output = pipeline.predict(input="HorseRiding.avi")
for res in output:
res.print() ## Print the structured prediction output
res.save_to_video(save_path="./output/") ## Save the visualized video results
res.save_to_json(save_path="./output/") ## Save the structured prediction output
đ Detailed Tutorials¶
-
PP-ChatOCRv4-doc
Document Scene Information Extraction v4 (PP-ChatOCRv4-doc) is a PaddlePaddle-based intelligent document and image analysis solution that integrates LLM (Large Language Model), MLLM (Multimodal Large Language Model), and OCR (Optical Character Recognition) technologies. It provides a one-stop solution for common challenges in complex document information extraction, such as layout analysis, rare character recognition, multi-page PDFs, table extraction, and seal detection.
-
OCR
The general OCR pipeline is used to solve text recognition tasks, extract text information from images, and output it in text form. Based on the end-to-end OCR system, it can achieve millisecond-level precise text content prediction on CPUs and reach open-source SOTA in general scenarios.
-
PP-StructureV3
The PP-StructureV3 pipeline enhances the capabilities of layout area detection, table recognition, and formula recognition based on the General Layout Parsing v1 pipeline. It also adds the ability to restore multi-column reading order and convert results to Markdown files. It performs well on various document datasets and can handle more complex document data.
-
General Table Recognition Pipeline v2
General Table Recognition Pipeline v2 is designed to solve table recognition tasks by identifying tables in images and outputting them in HTML format. This pipeline enables precise table prediction and is applicable across various fields, including general, manufacturing, finance, and transportation.
-
Small Object Detection
Small object detection is a technology specifically designed to recognize smaller objects in images, widely used in surveillance, unmanned driving, and satellite image analysis fields. It can accurately locate and classify small-sized objects such as pedestrians, traffic signs, or small animals from complex scenes.
-
Time Series Forecasting
Time series forecasting is a technique that uses historical data to predict future trends by analyzing the patterns of change in time series data. It is widely used in financial markets, weather forecasting, and sales forecasting fields.
đŦ Discussion¶
We warmly welcome and encourage community members to raise questions, share ideas, and feedback in the Discussions section. Whether you want to report a bug, discuss a feature request, seek help, or just want to keep up with the latest project news, this is a great platform.