Skip to content

Paddle2ONNX Model Conversion and Prediction

This chapter introduces how to convert PaddleOCR models to ONNX models and perform predictions based on the ONNXRuntime engine.

1. Environment Setup

You need to prepare the environments for PaddleOCR, Paddle2ONNX model conversion, and ONNXRuntime prediction.

PaddleOCR

Clone the PaddleOCR repository, use the main branch, and install it. Since the PaddleOCR repository is relatively large and cloning via git clone can be slow, this tutorial has already downloaded it.

git clone -b main https://github.com/PaddlePaddle/PaddleOCR.git
cd PaddleOCR && python3 -m pip install -e .

Paddle2ONNX

Paddle2ONNX supports converting models in the PaddlePaddle format to the ONNX format. Operators currently stably support exporting ONNX Opset versions 9~18, and some Paddle operators support conversion to lower ONNX Opsets. For more details, please refer to Paddle2ONNX.

  • Install Paddle2ONNX
python3 -m pip install paddle2onnx
  • Install ONNXRuntime
python3 -m pip install onnxruntime

2. Model Conversion

Download Paddle Models

There are two ways to obtain Paddle static graph models: download the prediction models provided by PaddleOCR in the model list; or refer to the Model Export Instructions to convert trained weights into inference models.

Using the PP-OCR series English detection, recognition, and classification models as examples:

1
2
3
4
5
6
7
8
wget -nc -P ./inference https://paddleocr.bj.bcebos.com/PP-OCRv3/english/en_PP-OCRv3_det_infer.tar
cd ./inference && tar xf en_PP-OCRv3_det_infer.tar && cd ..

wget -nc  -P ./inference https://paddleocr.bj.bcebos.com/PP-OCRv3/english/en_PP-OCRv3_rec_infer.tar
cd ./inference && tar xf en_PP-OCRv3_rec_infer.tar && cd ..

wget -nc  -P ./inference https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_mobile_v2.0_cls_infer.tar
cd ./inference && tar xf ch_ppocr_mobile_v2.0_cls_infer.tar && cd ..
1
2
3
4
5
6
7
8
wget -nc -P ./inference https://paddleocr.bj.bcebos.com/PP-OCRv3/english/en_PP-OCRv3_det_infer.tar
cd ./inference && tar xf en_PP-OCRv3_det_infer.tar && cd ..

wget -nc  -P ./inference https://paddleocr.bj.bcebos.com/PP-OCRv4/english/en_PP-OCRv4_rec_infer.tar
cd ./inference && tar xf en_PP-OCRv4_rec_infer.tar && cd ..

wget -nc  -P ./inference https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_mobile_v2.0_cls_infer.tar
cd ./inference && tar xf ch_ppocr_mobile_v2.0_cls_infer.tar && cd ..

Model Conversion

Use Paddle2ONNX to convert Paddle static graph models to the ONNX model format:

paddle2onnx --model_dir ./inference/en_PP-OCRv3_det_infer \
--model_filename inference.pdmodel \
--params_filename inference.pdiparams \
--save_file ./inference/det_onnx/model.onnx \
--opset_version 11 \
--enable_onnx_checker True

paddle2onnx --model_dir ./inference/en_PP-OCRv3_rec_infer \
--model_filename inference.pdmodel \
--params_filename inference.pdiparams \
--save_file ./inference/rec_onnx/model.onnx \
--opset_version 11 \
--enable_onnx_checker True

paddle2onnx --model_dir ./inference/ch_ppocr_mobile_v2.0_cls_infer \
--model_filename inference.pdmodel \
--params_filename inference.pdiparams \
--save_file ./inference/cls_onnx/model.onnx \
--opset_version 11 \
--enable_onnx_checker True
paddle2onnx --model_dir ./inference/en_PP-OCRv3_det_infer \
--model_filename inference.pdmodel \
--params_filename inference.pdiparams \
--save_file ./inference/det_onnx/model.onnx \
--opset_version 11 \
--enable_onnx_checker True

paddle2onnx --model_dir ./inference/en_PP-OCRv4_rec_infer \
--model_filename inference.pdmodel \
--params_filename inference.pdiparams \
--save_file ./inference/rec_onnx/model.onnx \
--opset_version 11 \
--enable_onnx_checker True

paddle2onnx --model_dir ./inference/ch_ppocr_mobile_v2.0_cls_infer \
--model_filename inference.pdmodel \
--params_filename inference.pdiparams \
--save_file ./inference/cls_onnx/model.onnx \
--opset_version 11 \
--enable_onnx_checker True

After execution, the ONNX models will be saved respectively under ./inference/det_onnx/, ./inference/rec_onnx/, and ./inference/cls_onnx/.

  • Note: For OCR models, dynamic shapes must be used during conversion; otherwise, the prediction results may slightly differ from directly using Paddle for prediction. Additionally, the following models currently do not support conversion to ONNX models: NRTR, SAR, RARE, SRN.

  • Note: After Paddle2ONNX version v1.2.3, dynamic shapes are supported by default, i.e., float32[p2o.DynamicDimension.0,3,p2o.DynamicDimension.1,p2o.DynamicDimension.2]. The option --input_shape_dict has been deprecated. If you need to adjust shapes, you can use the following command to adjust the input shape of the Paddle model.

1
2
3
python3 -m paddle2onnx.optimize --input_model inference/det_onnx/model.onnx \
  --output_model inference/det_onnx/model.onnx \
  --input_shape_dict "{'x': [-1,3,-1,-1]}"

If you have optimization requirements for the exported ONNX model, it is recommended to use OnnxSlim to optimize the model:

pip install onnxslim
onnxslim model.onnx slim.onnx

3. Inference and Prediction

Using the Chinese OCR model as an example, you can perform prediction using ONNXRuntime by executing the following command:

1
2
3
4
5
6
python3 tools/infer/predict_system.py --use_gpu=False --use_onnx=True \
--det_model_dir=./inference/det_onnx/model.onnx  \
--rec_model_dir=./inference/rec_onnx/model.onnx  \
--cls_model_dir=./inference/cls_onnx/model.onnx  \
--image_dir=./docs/ppocr/infer_deploy/images/img_12.jpg \
--rec_char_dict_path=ppocr/utils/en_dict.txt

Taking the English OCR model as an example, you can perform prediction using Paddle Inference by executing the following command:

1
2
3
4
5
6
python3 tools/infer/predict_system.py --use_gpu=False \
--cls_model_dir=./inference/ch_ppocr_mobile_v2.0_cls_infer \
--rec_model_dir=./inference/en_PP-OCRv3_rec_infer \
--det_model_dir=./inference/en_PP-OCRv3_det_infer \
--image_dir=./docs/ppocr/infer_deploy/images/img_12.jpg\
--rec_char_dict_path=ppocr/utils/en_dict.txt
1
2
3
4
5
6
python3 tools/infer/predict_system.py --use_gpu=False \
--cls_model_dir=./inference/ch_ppocr_mobile_v2.0_cls_infer \
--rec_model_dir=./inference/en_PP-OCRv4_rec_infer \
--det_model_dir=./inference/en_PP-OCRv3_det_infer \
--image_dir=./docs/ppocr/infer_deploy/images/img_12.jpg \
--rec_char_dict_path=ppocr/utils/en_dict.txt

After executing the command, the terminal will print out the predicted recognition information, and the visualization results will be saved under ./inference_results/.

ONNXRuntime Execution Result:

Paddle Inference Execution Result:

Using ONNXRuntime for prediction, terminal output:

[2022/10/10 12:06:28] ppocr DEBUG: dt_boxes num : 11, elapse : 0.3568880558013916
[2022/10/10 12:06:31] ppocr DEBUG: rec_res num  : 11, elapse : 2.6445000171661377
[2022/10/10 12:06:31] ppocr DEBUG: 0  Predict time of doc/imgs_en/img_12.jpg: 3.021s
[2022/10/10 12:06:31] ppocr DEBUG: ACKNOWLEDGEMENTS, 0.997
[2022/10/10 12:06:31] ppocr DEBUG: We would like to thank all the designers and, 0.976
[2022/10/10 12:06:31] ppocr DEBUG: contributors who have been involved in the, 0.979
[2022/10/10 12:06:31] ppocr DEBUG: production of this book; their contributions, 0.989
[2022/10/10 12:06:31] ppocr DEBUG: have been indispensable to its creation. We, 0.956
[2022/10/10 12:06:31] ppocr DEBUG: would also like to express our gratitude to all, 0.991
[2022/10/10 12:06:31] ppocr DEBUG: the producers for their invaluable opinions, 0.978
[2022/10/10 12:06:31] ppocr DEBUG: and assistance throughout this project. And to, 0.988
[2022/10/10 12:06:31] ppocr DEBUG: the many others whose names are not credited, 0.958
[2022/10/10 12:06:31] ppocr DEBUG: but have made specific input in this book, we, 0.970
[2022/10/10 12:06:31] ppocr DEBUG: thank you for your continuous support., 0.998
[2022/10/10 12:06:31] ppocr DEBUG: The visualized image saved in ./inference_results/img_12.jpg
[2022/10/10 12:06:31] ppocr INFO: The predict total time is 3.2482550144195557

Using Paddle Inference for prediction, terminal output:

[2022/10/10 12:06:28] ppocr DEBUG: dt_boxes num : 11, elapse : 0.3568880558013916
[2022/10/10 12:06:31] ppocr DEBUG: rec_res num  : 11, elapse : 2.6445000171661377
[2022/10/10 12:06:31] ppocr DEBUG: 0  Predict time of doc/imgs_en/img_12.jpg: 3.021s
[2022/10/10 12:06:31] ppocr DEBUG: ACKNOWLEDGEMENTS, 0.997
[2022/10/10 12:06:31] ppocr DEBUG: We would like to thank all the designers and, 0.976
[2022/10/10 12:06:31] ppocr DEBUG: contributors who have been involved in the, 0.979
[2022/10/10 12:06:31] ppocr DEBUG: production of this book; their contributions, 0.989
[2022/10/10 12:06:31] ppocr DEBUG: have been indispensable to its creation. We, 0.956
[2022/10/10 12:06:31] ppocr DEBUG: would also like to express our gratitude to all, 0.991
[2022/10/10 12:06:31] ppocr DEBUG: the producers for their invaluable opinions, 0.978
[2022/10/10 12:06:31] ppocr DEBUG: and assistance throughout this project. And to, 0.988
[2022/10/10 12:06:31] ppocr DEBUG: the many others whose names are not credited, 0.958
[2022/10/10 12:06:31] ppocr DEBUG: but have made specific input in this book, we, 0.970
[2022/10/10 12:06:31] ppocr DEBUG: thank you for your continuous support., 0.998
[2022/10/10 12:06:31] ppocr DEBUG: The visualized image saved in ./inference_results/img_12.jpg
[2022/10/10 12:06:31] ppocr INFO: The predict total time is 3.2482550144195557

Comments