Skip to content

Jetson Deployment for PaddleOCR

This section introduces the deployment of PaddleOCR on Jetson NX, TX2, nano, AGX and other series of hardware.

1. Prepare Environment

You need to prepare a Jetson development hardware. If you need TensorRT, you need to prepare the TensorRT environment. It is recommended to use TensorRT version 7.1.3;

1. Install PaddlePaddle in Jetson

The PaddlePaddle download link Please select the appropriate installation package for your Jetpack version, cuda version, and trt version. Here, we download paddlepaddle_gpu-2.3.0rc0-cp36-cp36m-linux_aarch64.whl.

Install PaddlePaddle:

pip3 install -U paddlepaddle_gpu-2.3.0rc0-cp36-cp36m-linux_aarch64.whl

2. Download PaddleOCR code and install dependencies

Clone the PaddleOCR code:

git clone https://github.com/PaddlePaddle/PaddleOCR

and install dependencies:

cd PaddleOCR
pip3 install -r requirements.txt
  • Note: Jetson hardware CPU is poor, dependency installation is slow, please wait patiently

2. Perform prediction

Obtain the PPOCR model from the document model library. The following takes the PP-OCRv3 model as an example to introduce the use of the PPOCR model on Jetson:

Download and unzip the PP-OCRv3 models.

1
2
3
4
wget https://paddleocr.bj.bcebos.com/PP-OCRv3/chinese/ch_PP-OCRv3_det_infer.tar
wget https://paddleocr.bj.bcebos.com/PP-OCRv3/chinese/ch_PP-OCRv3_rec_infer.tar
tar xf ch_PP-OCRv3_det_infer.tar
tar xf ch_PP-OCRv3_rec_infer.tar

The text detection inference:

cd PaddleOCR
python3 tools/infer/predict_det.py --det_model_dir=./inference/ch_PP-OCRv2_det_infer/  --image_dir=./doc/imgs/french_0.jpg  --use_gpu=True

After executing the command, the predicted information will be printed out in the terminal, and the visualization results will be saved in the ./inference_results/ directory.

The text recognition inference:

python3 tools/infer/predict_det.py --rec_model_dir=./inference/ch_PP-OCRv2_rec_infer/  --image_dir=./doc/imgs_words/en/word_2.png  --use_gpu=True --rec_image_shape="3,48,320"

After executing the command, the predicted information will be printed on the terminal, and the output is as follows:

[2022/04/28 15:41:45] root INFO: Predicts of ./doc/imgs_words/en/word_2.png:('yourself', 0.98084533)

The text detection and text recognition inference:

python3 tools/infer/predict_system.py --det_model_dir=./inference/ch_PP-OCRv2_det_infer/ --rec_model_dir=./inference/ch_PP-OCRv2_rec_infer/ --image_dir=./doc/imgs/00057937.jpg --use_gpu=True --rec_image_shape="3,48,320"

After executing the command, the predicted information will be printed out in the terminal, and the visualization results will be saved in the ./inference_results/ directory.

To enable TRT prediction, you only need to set --use_tensorrt=True on the basis of the above command:

python3 tools/infer/predict_system.py --det_model_dir=./inference/ch_PP-OCRv2_det_infer/ --rec_model_dir=./inference/ch_PP-OCRv2_rec_infer/ --image_dir=./doc/imgs/  --rec_image_shape="3,48,320" --use_gpu=True --use_tensorrt=True

For more ppocr model predictions, please refer todocument

Comments