NRTR¶
1. Introduction¶
Paper:
NRTR: A No-Recurrence Sequence-to-Sequence Model For Scene Text Recognition Fenfen Sheng and Zhineng Chen and Bo Xu ICDAR, 2019
Using MJSynth and SynthText two text recognition datasets for training, and evaluating on IIIT, SVT, IC03, IC13, IC15, SVTP, CUTE datasets, the algorithm reproduction effect is as follows:
Model | Backbone | config | Acc | Download link |
---|---|---|---|---|
NRTR | MTB | rec_mtb_nrtr.yml | 84.21% | trained model |
2. Environment¶
Please refer to "Environment Preparation" to configure the PaddleOCR environment, and refer to "Project Clone"to clone the project code.
3. Model Training / Evaluation / Prediction¶
Please refer to Text Recognition Tutorial. PaddleOCR modularizes the code, and training different recognition models only requires changing the configuration file.
Training¶
Specifically, after the data preparation is completed, the training can be started. The training command is as follows:
Evaluation¶
Prediction¶
4. Inference and Deployment¶
4.1 Python Inference¶
First, the model saved during the NRTR text recognition training process is converted into an inference model. ( Model download link) ), you can use the following command to convert:
Note:
- If you are training the model on your own dataset and have modified the dictionary file, please pay attention to modify the
character_dict_path
in the configuration file to the modified dictionary file. - If you modified the input size during training, please modify the
infer_shape
corresponding to NRTR in thetools/export_model.py
file.
After the conversion is successful, there are three files in the directory:
For NRTR text recognition model inference, the following commands can be executed:
After executing the command, the prediction result (recognized text and score) of the image above is printed to the screen, an example is as follows:
4.2 C++ Inference¶
Not supported
4.3 Serving¶
Not supported
4.4 More¶
Not supported
5. FAQ¶
- In the
NRTR
paper, Beam search is used to decode characters, but the speed is slow. Beam search is not used by default here, and greedy search is used to decode characters.
6. Release Note¶
-
The release/2.6 version updates the NRTR code structure. The new version of NRTR can load the model parameters of the old version (release/2.5 and before), and you may use the following code to convert the old version model parameters to the new version model parameters:
Click to expand
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122
params = paddle.load('path/' + '.pdparams') # the old version parameters state_dict = model.state_dict() # the new version model parameters new_state_dict = {} for k1, v1 in state_dict.items(): k = k1 if 'encoder' in k and 'self_attn' in k and 'qkv' in k and 'weight' in k: k_para = k[:13] + 'layers.' + k[13:] q = params[k_para.replace('qkv', 'conv1')].transpose((1, 0, 2, 3)) k = params[k_para.replace('qkv', 'conv2')].transpose((1, 0, 2, 3)) v = params[k_para.replace('qkv', 'conv3')].transpose((1, 0, 2, 3)) new_state_dict[k1] = np.concatenate([q[:, :, 0, 0], k[:, :, 0, 0], v[:, :, 0, 0]], -1) elif 'encoder' in k and 'self_attn' in k and 'qkv' in k and 'bias' in k: k_para = k[:13] + 'layers.' + k[13:] q = params[k_para.replace('qkv', 'conv1')] k = params[k_para.replace('qkv', 'conv2')] v = params[k_para.replace('qkv', 'conv3')] new_state_dict[k1] = np.concatenate([q, k, v], -1) elif 'encoder' in k and 'self_attn' in k and 'out_proj' in k: k_para = k[:13] + 'layers.' + k[13:] new_state_dict[k1] = params[k_para] elif 'encoder' in k and 'norm3' in k: k_para = k[:13] + 'layers.' + k[13:] new_state_dict[k1] = params[k_para.replace('norm3', 'norm2')] elif 'encoder' in k and 'norm1' in k: k_para = k[:13] + 'layers.' + k[13:] new_state_dict[k1] = params[k_para] elif 'decoder' in k and 'self_attn' in k and 'qkv' in k and 'weight' in k: k_para = k[:13] + 'layers.' + k[13:] q = params[k_para.replace('qkv', 'conv1')].transpose((1, 0, 2, 3)) k = params[k_para.replace('qkv', 'conv2')].transpose((1, 0, 2, 3)) v = params[k_para.replace('qkv', 'conv3')].transpose((1, 0, 2, 3)) new_state_dict[k1] = np.concatenate([q[:, :, 0, 0], k[:, :, 0, 0], v[:, :, 0, 0]], -1) elif 'decoder' in k and 'self_attn' in k and 'qkv' in k and 'bias' in k: k_para = k[:13] + 'layers.' + k[13:] q = params[k_para.replace('qkv', 'conv1')] k = params[k_para.replace('qkv', 'conv2')] v = params[k_para.replace('qkv', 'conv3')] new_state_dict[k1] = np.concatenate([q, k, v], -1) elif 'decoder' in k and 'self_attn' in k and 'out_proj' in k: k_para = k[:13] + 'layers.' + k[13:] new_state_dict[k1] = params[k_para] elif 'decoder' in k and 'cross_attn' in k and 'q' in k and 'weight' in k: k_para = k[:13] + 'layers.' + k[13:] k_para = k_para.replace('cross_attn', 'multihead_attn') q = params[k_para.replace('q', 'conv1')].transpose((1, 0, 2, 3)) new_state_dict[k1] = q[:, :, 0, 0] elif 'decoder' in k and 'cross_attn' in k and 'q' in k and 'bias' in k: k_para = k[:13] + 'layers.' + k[13:] k_para = k_para.replace('cross_attn', 'multihead_attn') q = params[k_para.replace('q', 'conv1')] new_state_dict[k1] = q elif 'decoder' in k and 'cross_attn' in k and 'kv' in k and 'weight' in k: k_para = k[:13] + 'layers.' + k[13:] k_para = k_para.replace('cross_attn', 'multihead_attn') k = params[k_para.replace('kv', 'conv2')].transpose((1, 0, 2, 3)) v = params[k_para.replace('kv', 'conv3')].transpose((1, 0, 2, 3)) new_state_dict[k1] = np.concatenate([k[:, :, 0, 0], v[:, :, 0, 0]], -1) elif 'decoder' in k and 'cross_attn' in k and 'kv' in k and 'bias' in k: k_para = k[:13] + 'layers.' + k[13:] k_para = k_para.replace('cross_attn', 'multihead_attn') k = params[k_para.replace('kv', 'conv2')] v = params[k_para.replace('kv', 'conv3')] new_state_dict[k1] = np.concatenate([k, v], -1) elif 'decoder' in k and 'cross_attn' in k and 'out_proj' in k: k_para = k[:13] + 'layers.' + k[13:] k_para = k_para.replace('cross_attn', 'multihead_attn') new_state_dict[k1] = params[k_para] elif 'decoder' in k and 'norm' in k: k_para = k[:13] + 'layers.' + k[13:] new_state_dict[k1] = params[k_para] elif 'mlp' in k and 'weight' in k: k_para = k[:13] + 'layers.' + k[13:] k_para = k_para.replace('fc', 'conv') k_para = k_para.replace('mlp.', '') w = params[k_para].transpose((1, 0, 2, 3)) new_state_dict[k1] = w[:, :, 0, 0] elif 'mlp' in k and 'bias' in k: k_para = k[:13] + 'layers.' + k[13:] k_para = k_para.replace('fc', 'conv') k_para = k_para.replace('mlp.', '') w = params[k_para] new_state_dict[k1] = w else: new_state_dict[k1] = params[k1] if list(new_state_dict[k1].shape) != list(v1.shape): print(k1) for k, v1 in state_dict.items(): if k not in new_state_dict.keys(): print(1, k) elif list(new_state_dict[k].shape) != list(v1.shape): print(2, k) model.set_state_dict(new_state_dict) paddle.save(model.state_dict(), 'nrtrnew_from_old_params.pdparams')
-
The new version has a clean code structure and improved inference speed compared with the old version.
Citation¶
@article{Sheng2019NRTR,
title = {NRTR: A No-Recurrence Sequence-to-Sequence Model For Scene Text Recognition},
author = {Fenfen Sheng and Zhineng Chen and Bo Xu},
booktitle = {ICDAR},
year = {2019},
url = {http://arxiv.org/abs/1806.00926},
pages = {781-786}
}