Skip to content

PaddleX Common Model Configuration File Parameter Explanation

Global

Parameter Name Data Type Description Default Value
model str Specifies the model name Model name specified in the YAML file
mode str Specifies the mode (check_dataset/train/evaluate/export/predict) check_dataset
dataset_dir str Path to the dataset Dataset path specified in the YAML file
device str Specifies the device to use Device ID specified in the YAML file
output str Output path "output"

CheckDataset

Parameter Name Data Type Description Default Value
convert.enable bool Whether to convert the dataset format; Image classification, pedestrian attribute recognition, vehicle attribute recognition, document orientation classification, object detection, pedestrian detection, vehicle detection, face detection, anomaly detection, text detection, seal text detection, text recognition, table recognition, image rectification, and layout area detection do not support data format conversion; Image multi-label classification supports COCO format conversion; Image feature, semantic segmentation, and instance segmentation support LabelMe format conversion; Object detection and small object detection support VOC and LabelMe format conversion; Formula recognition supports PKL format conversion; Time series prediction, time series anomaly detection, and time series classification support xlsx and xls format conversion False
convert.src_dataset_type str The source dataset format to be converted null
split.enable bool Whether to re-split the dataset False
split.train_percent int Sets the percentage of the training set, an integer between 0-100, ensuring the sum with val_percent is 100; null
split.val_percent int Sets the percentage of the validation set, an integer between 0-100, ensuring the sum with train_percent is 100; null
split.gallery_percent int Sets the percentage of gallery samples in the validation set, an integer between 0-100, ensuring the sum with train_percent and query_percent is 100; This parameter is only used in the image feature module null
split.query_percent int Sets the percentage of query samples in the validation set, an integer between 0-100, ensuring the sum with train_percent and gallery_percent is 100; This parameter is only used in the image feature module null

Train

Parameter Name Data Type Description Default Value
num_classes int Number of classes in the dataset; If you need to train on a private dataset, you need to set this parameter; Image rectification, text detection, seal text detection, text recognition, formula recognition, table recognition, time series prediction, time series anomaly detection, and time series classification do not support this parameter Number of classes specified in the YAML file
epochs_iters int Number of times the model repeats learning the training data Number of iterations specified in the YAML file
batch_size int Training batch size Training batch size specified in the YAML file
learning_rate float Initial learning rate Initial learning rate specified in the YAML file
pretrain_weight_path str Pre-trained weight path null
warmup_steps int Warm-up steps Warm-up steps specified in the YAML file
resume_path str Model resume path after interruption null
log_interval int Training log printing interval Training log printing interval specified in the YAML file
eval_interval int Model evaluation interval Model evaluation interval specified in the YAML file
save_interval int Model saving interval; not supported for anomaly detection, semantic segmentation, image rectification, time series forecasting, time series anomaly detection, and time series classification Model saving interval specified in the YAML file

Evaluate

Parameter Name Data Type Description Default Value
weight_path str Evaluation model path Default local path from training output, when specified as None, indicates using official weights
log_interval int Evaluation log printing interval Evaluation log printing interval specified in the YAML file

Export

Parameter Name Data Type Description Default Value
weight_path str Dynamic graph weight path for exporting the model Default local path from training output, when specified as None, indicates using official weights

Predict

Parameter Name Data Type Description Default Value
batch_size int Prediction batch size The prediction batch size specified in the YAML file
model_dir str Path to the prediction model The default local inference model path produced by training. When specified as None, it indicates the use of official weights
input str Path to the prediction input The prediction input path specified in the YAML file

Comments