通用OCR产线使用教程¶
1. OCR产线介绍¶
OCR(光学字符识别,Optical Character Recognition)是一种将图像中的文字转换为可编辑文本的技术。它广泛应用于文档数字化、信息提取和数据处理等领域。OCR 可以识别印刷文本、手写文本,甚至某些类型的字体和符号。
通用 OCR 产线用于解决文字识别任务,提取图片中的文字信息以文本形式输出,本产线支持PP-OCRv3、PP-OCRv4、PP-OCRv5模型的使用,其中默认模型为 PaddleOCR3.0 发布的 PP-OCRv5_mobile 模型,其在多个场景中较 PP-OCRv4_mobile 提升 13 个百分点。
通用OCR产线中包含以下5个模块。每个模块均可独立进行训练和推理,并包含多个模型。有关详细信息,请点击相应模块以查看文档。
- 文档图像方向分类模块 (可选)
- 文本图像矫正模块 (可选)
- 文本行方向分类模块 (可选)
- 文本检测模块
- 文本识别模块
在本产线中,您可以根据下方的基准测试数据选择使用的模型。
文档图像方向分类模块(可选):
模型 | 模型下载链接 | Top-1 Acc(%) | GPU推理耗时(ms) [常规模式 / 高性能模式] |
CPU推理耗时(ms) [常规模式 / 高性能模式] |
模型存储大小(M) | 介绍 |
---|---|---|---|---|---|---|
PP-LCNet_x1_0_doc_ori | 推理模型/训练模型 | 99.06 | 2.31 / 0.43 | 3.37 / 1.27 | 7 | 基于PP-LCNet_x1_0的文档图像分类模型,含有四个类别,即0度,90度,180度,270度 |
文本检测模块:
模型 | 模型下载链接 | 检测Hmean(%) | GPU推理耗时(ms) [常规模式 / 高性能模式] |
CPU推理耗时(ms) [常规模式 / 高性能模式] |
模型存储大小(M) | 介绍 |
---|---|---|---|---|---|---|
PP-OCRv5_server_det | 推理模型/训练模型 | 83.8 | 89.55 / 70.19 | 371.65 / 371.65 | 84.3 | PP-OCRv5 的服务端文本检测模型,精度更高,适合在性能较好的服务器上部署 |
PP-OCRv5_mobile_det | 推理模型/训练模型 | 79.0 | 8.79 / 3.13 | 51.00 / 28.58 | 4.7 | PP-OCRv5 的移动端文本检测模型,效率更高,适合在端侧设备部署 |
PP-OCRv4_server_det | 推理模型/训练模型 | 69.2 | 83.34 / 80.91 | 442.58 / 442.58 | 109 | PP-OCRv4 的服务端文本检测模型,精度更高,适合在性能较好的服务器上部署 |
PP-OCRv4_mobile_det | 推理模型/训练模型 | 63.8 | 8.79 / 3.13 | 51.00 / 28.58 | 4.7 | PP-OCRv4 的移动端文本检测模型,效率更高,适合在端侧设备部署 |
文本识别模块:
模型 | 模型下载链接 | 识别 Avg Accuracy(%) | GPU推理耗时(ms) [常规模式 / 高性能模式] |
CPU推理耗时(ms) [常规模式 / 高性能模式] |
模型存储大小(M) | 介绍 |
---|---|---|---|---|---|---|
PP-OCRv5_server_rec | 推理模型/训练模型 | 86.38 | 8.45/2.36 | 122.69/122.69 | 81 M | PP-OCRv5_rec 是新一代文本识别模型。该模型致力于以单一模型高效、精准地支持简体中文、繁体中文、英文、日文四种主要语言,以及手写、竖版、拼音、生僻字等复杂文本场景的识别。在保持识别效果的同时,兼顾推理速度和模型鲁棒性,为各种场景下的文档理解提供高效、精准的技术支撑。 |
PP-OCRv5_mobile_rec | 推理模型/训练模型 | 81.29 | 1.46/5.43 | 5.32/91.79 | 16 M | |
PP-OCRv4_server_rec_doc | 推理模型/训练模型 | 86.58 | 6.65 / 2.38 | 32.92 / 32.92 | 181 M | PP-OCRv4_server_rec_doc是在PP-OCRv4_server_rec的基础上,在更多中文文档数据和PP-OCR训练数据的混合数据训练而成,增加了部分繁体字、日文、特殊字符的识别能力,可支持识别的字符为1.5万+,除文档相关的文字识别能力提升外,也同时提升了通用文字的识别能力 |
PP-OCRv4_mobile_rec | 推理模型/训练模型 | 83.28 | 4.82 / 1.20 | 16.74 / 4.64 | 88 M | PP-OCRv4的轻量级识别模型,推理效率高,可以部署在包含端侧设备的多种硬件设备中 |
PP-OCRv4_server_rec | 推理模型/训练模型 | 85.19 | 6.58 / 2.43 | 33.17 / 33.17 | 151 M | PP-OCRv4的服务器端模型,推理精度高,可以部署在多种不同的服务器上 |
en_PP-OCRv4_mobile_rec | 推理模型/训练模型 | 70.39 | 4.81 / 0.75 | 16.10 / 5.31 | 66 M | 基于PP-OCRv4识别模型训练得到的超轻量英文识别模型,支持英文、数字识别 |
👉模型列表详情
* PP-OCRv5 多场景模型模型 | 模型下载链接 | 中文识别 Avg Accuracy(%) | 英文识别 Avg Accuracy(%) | 繁体中文识别 Avg Accuracy(%) | 日文识别 Avg Accuracy(%) | GPU推理耗时(ms) [常规模式 / 高性能模式] |
CPU推理耗时(ms) [常规模式 / 高性能模式] |
模型存储大小(M) | 介绍 |
---|---|---|---|---|---|---|---|---|---|
PP-OCRv5_server_rec | 推理模型/训练模型 | 86.38 | 64.70 | 93.29 | 60.35 | 1.46/5.43 | 5.32/91.79 | 81 M | PP-OCRv5_rec 是新一代文本识别模型。该模型致力于以单一模型高效、精准地支持简体中文、繁体中文、英文、日文四种主要语言,以及手写、竖版、拼音、生僻字等复杂文本场景的识别。在保持识别效果的同时,兼顾推理速度和模型鲁棒性,为各种场景下的文档理解提供高效、精准的技术支撑。 |
PP-OCRv5_mobile_rec | 推理模型/训练模型 | 81.29 | 66.00 | 83.55 | 54.65 | 1.46/5.43 | 5.32/91.79 | 16 M |
模型 | 模型下载链接 | 识别 Avg Accuracy(%) | GPU推理耗时(ms) [常规模式 / 高性能模式] |
CPU推理耗时(ms) [常规模式 / 高性能模式] |
模型存储大小(M) | 介绍 |
---|---|---|---|---|---|---|
PP-OCRv4_server_rec_doc | 推理模型/训练模型 | 86.58 | 6.65 / 2.38 | 32.92 / 32.92 | 91 M | PP-OCRv4_server_rec_doc是在PP-OCRv4_server_rec的基础上,在更多中文文档数据和PP-OCR训练数据的混合数据训练而成,增加了部分繁体字、日文、特殊字符的识别能力,可支持识别的字符为1.5万+,除文档相关的文字识别能力提升外,也同时提升了通用文字的识别能力 |
PP-OCRv4_mobile_rec | 推理模型/训练模型 | 83.28 | 4.82 / 1.20 | 16.74 / 4.64 | 11 M | PP-OCRv4的轻量级识别模型,推理效率高,可以部署在包含端侧设备的多种硬件设备中 |
PP-OCRv4_server_rec | 推理模型/训练模型 | 85.19 | 6.58 / 2.43 | 33.17 / 33.17 | 87 M | PP-OCRv4的服务器端模型,推理精度高,可以部署在多种不同的服务器上 |
PP-OCRv3_mobile_rec | 推理模型/训练模型 | 75.43 | 5.87 / 1.19 | 9.07 / 4.28 | 11 M | PP-OCRv3的轻量级识别模型,推理效率高,可以部署在包含端侧设备的多种硬件设备中 |
模型 | 模型下载链接 | 识别 Avg Accuracy(%) | GPU推理耗时(ms) [常规模式 / 高性能模式] |
CPU推理耗时(ms) [常规模式 / 高性能模式] |
模型存储大小(M) | 介绍 |
---|---|---|---|---|---|---|
ch_SVTRv2_rec | 推理模型/训练模型 | 68.81 | 8.08 / 2.74 | 50.17 / 42.50 | 73.9 M | SVTRv2 是一种由复旦大学视觉与学习实验室(FVL)的OpenOCR团队研发的服务端文本识别模型,其在PaddleOCR算法模型挑战赛 - 赛题一:OCR端到端识别任务中荣获一等奖,A榜端到端识别精度相比PP-OCRv4提升6%。 |
模型 | 模型下载链接 | 识别 Avg Accuracy(%) | GPU推理耗时(ms) [常规模式 / 高性能模式] |
CPU推理耗时(ms) [常规模式 / 高性能模式] |
模型存储大小(M) | 介绍 |
---|---|---|---|---|---|---|
ch_RepSVTR_rec | 推理模型/训练模型 | 65.07 | 5.93 / 1.62 | 20.73 / 7.32 | 22.1 M | RepSVTR 文本识别模型是一种基于SVTRv2 的移动端文本识别模型,其在PaddleOCR算法模型挑战赛 - 赛题一:OCR端到端识别任务中荣获一等奖,B榜端到端识别精度相比PP-OCRv4提升2.5%,推理速度持平。 |
模型 | 模型下载链接 | 识别 Avg Accuracy(%) | GPU推理耗时(ms) [常规模式 / 高性能模式] |
CPU推理耗时(ms) [常规模式 / 高性能模式] |
模型存储大小(M) | 介绍 |
---|---|---|---|---|---|---|
en_PP-OCRv4_mobile_rec | 推理模型/训练模型 | 70.39 | 4.81 / 0.75 | 16.10 / 5.31 | 6.8 M | 基于PP-OCRv4识别模型训练得到的超轻量英文识别模型,支持英文、数字识别 |
en_PP-OCRv3_mobile_rec | 推理模型/训练模型 | 70.69 | 5.44 / 0.75 | 8.65 / 5.57 | 7.8 M | 基于PP-OCRv3识别模型训练得到的超轻量英文识别模型,支持英文、数字识别 |
模型 | 模型下载链接 | 识别 Avg Accuracy(%) | GPU推理耗时(ms) [常规模式 / 高性能模式] |
CPU推理耗时(ms) [常规模式 / 高性能模式] |
模型存储大小(M) | 介绍 |
---|---|---|---|---|---|---|
korean_PP-OCRv3_mobile_rec | 推理模型/训练模型 | 60.21 | 5.40 / 0.97 | 9.11 / 4.05 | 8.6 M | 基于PP-OCRv3识别模型训练得到的超轻量韩文识别模型,支持韩文、数字识别 |
japan_PP-OCRv3_mobile_rec | 推理模型/训练模型 | 45.69 | 5.70 / 1.02 | 8.48 / 4.07 | 8.8 M | 基于PP-OCRv3识别模型训练得到的超轻量日文识别模型,支持日文、数字识别 |
chinese_cht_PP-OCRv3_mobile_rec | 推理模型/训练模型 | 82.06 | 5.90 / 1.28 | 9.28 / 4.34 | 9.7 M | 基于PP-OCRv3识别模型训练得到的超轻量繁体中文识别模型,支持繁体中文、数字识别 |
te_PP-OCRv3_mobile_rec | 推理模型/训练模型 | 95.88 | 5.42 / 0.82 | 8.10 / 6.91 | 7.8 M | 基于PP-OCRv3识别模型训练得到的超轻量泰卢固文识别模型,支持泰卢固文、数字识别 |
ka_PP-OCRv3_mobile_rec | 推理模型/训练模型 | 96.96 | 5.25 / 0.79 | 9.09 / 3.86 | 8.0 M | 基于PP-OCRv3识别模型训练得到的超轻量卡纳达文识别模型,支持卡纳达文、数字识别 |
ta_PP-OCRv3_mobile_rec | 推理模型/训练模型 | 76.83 | 5.23 / 0.75 | 10.13 / 4.30 | 8.0 M | 基于PP-OCRv3识别模型训练得到的超轻量泰米尔文识别模型,支持泰米尔文、数字识别 |
latin_PP-OCRv3_mobile_rec | 推理模型/训练模型 | 76.93 | 5.20 / 0.79 | 8.83 / 7.15 | 7.8 M | 基于PP-OCRv3识别模型训练得到的超轻量拉丁文识别模型,支持拉丁文、数字识别 |
arabic_PP-OCRv3_mobile_rec | 推理模型/训练模型 | 73.55 | 5.35 / 0.79 | 8.80 / 4.56 | 7.8 M | 基于PP-OCRv3识别模型训练得到的超轻量阿拉伯字母识别模型,支持阿拉伯字母、数字识别 |
cyrillic_PP-OCRv3_mobile_rec | 推理模型/训练模型 | 94.28 | 5.23 / 0.76 | 8.89 / 3.88 | 7.9 M | 基于PP-OCRv3识别模型训练得到的超轻量斯拉夫字母识别模型,支持斯拉夫字母、数字识别 |
devanagari_PP-OCRv3_mobile_rec | 推理模型/训练模型 | 96.44 | 5.22 / 0.79 | 8.56 / 4.06 | 7.9 M | 基于PP-OCRv3识别模型训练得到的超轻量梵文字母识别模型,支持梵文字母、数字识别 |
测试环境说明:
- 性能测试环境
- 测试数据集:
- 文档图像方向分类模型:PaddleOCR 自建的数据集,覆盖证件和文档等多个场景,包含 1000 张图片。
- 文本图像矫正模型:DocUNet。
- 文本检测模型:PaddleOCR 自建的中文数据集,覆盖街景、网图、文档、手写多个场景,其中检测包含 500 张图片。
- 中文识别模型: PaddleOCR 自建的中文数据集,覆盖街景、网图、文档、手写多个场景,其中文本识别包含 1.1w 张图片。
- ch_SVTRv2_rec:PaddleOCR算法模型挑战赛 - 赛题一:OCR端到端识别任务A榜评估集。
- ch_RepSVTR_rec:PaddleOCR算法模型挑战赛 - 赛题一:OCR端到端识别任务B榜评估集。
- 英文识别模型:PaddleOCR 自建的英文数据集。
- 多语言识别模型:PaddleOCR 自建的多语种数据集。
- 文本行方向分类模型:PaddleOCR 自建的数据集,覆盖证件和文档等多个场景,包含 1000 张图片。
- 硬件配置:
- GPU:NVIDIA Tesla T4
- CPU:Intel Xeon Gold 6271C @ 2.60GHz
- 其他环境:Ubuntu 20.04 / cuDNN 8.6 / TensorRT 8.5.2.2
- 测试数据集:
- 推理模式说明
模式 | GPU配置 | CPU配置 | 加速技术组合 |
---|---|---|---|
常规模式 | FP32精度 / 无TRT加速 | FP32精度 / 8线程 | PaddleInference |
高性能模式 | 选择先验精度类型和加速策略的最优组合 | FP32精度 / 8线程 | 选择先验最优后端(Paddle/OpenVINO/TRT等) |
如果您更注重模型的精度,请选择精度较高的模型;如果您更在意模型的推理速度,请选择推理速度较快的模型;如果您关注模型的存储大小,请选择存储体积较小的模型。
2. 快速开始¶
在本地使用通用OCR产线前,请确保您已经按照安装教程完成了wheel包安装。安装完成后,可以在本地使用命令行体验或 Python 集成。
2.1 命令行方式¶
一行命令即可快速体验OCR产线效果:
# 默认使用 PP-OCRv5 模型
paddleocr ocr -i https://paddle-model-ecology.bj.bcebos.com/paddlex/imgs/demo_image/general_ocr_002.png \
--use_doc_orientation_classify False \
--use_doc_unwarping False \
--use_textline_orientation False \
--save_path ./output \
--device gpu:0
# 通过 --ocr_version 指定 PP-OCR 其他版本
paddleocr ocr -i ./general_ocr_002.png --ocr_version PP-OCRv5
命令行支持更多参数设置,点击展开以查看命令行参数的详细说明
参数 | 参数说明 | 参数类型 | 默认值 |
---|---|---|---|
input |
待预测数据,支持多种输入类型,必填。
|
Python Var|str|list |
|
save_path |
指定推理结果文件保存的路径。如果设置为None , 推理结果将不会保存到本地。 |
str |
None |
doc_orientation_classify_model_name |
文档方向分类模型的名称。如果设置为None , 将会使用产线默认模型。 |
str |
None |
doc_orientation_classify_model_dir |
文档方向分类模型的目录路径。如果设置为None , 将会下载官方模型。 |
str |
None |
doc_unwarping_model_name |
文本图像矫正模型的名称。如果设置为None , 将会使用产线默认模型。 |
str |
None |
doc_unwarping_model_dir |
文本图像矫正模型的目录路径。如果设置为None , 将会下载官方模型。 |
str |
None |
text_detection_model_name |
文本检测模型的名称。如果设置为None , 将会使用产线默认模型。 |
str |
None |
text_detection_model_dir |
文本检测模型的目录路径。如果设置为None , 将会下载官方模型。 |
str |
None |
text_line_orientation_model_name |
文本行方向模型的名称。如果设置为None , 将会使用产线默认模型。 |
str |
None |
text_line_orientation_model_dir |
文本行方向模型的目录路径。如果设置为None , 将会下载官方模型。 |
str |
None |
text_line_orientation_batch_size |
文本行方向模型的批处理大小。如果设置为None , 将默认设置批处理大小为1 。 |
int |
None |
text_recognition_model_name |
文本识别模型的名称。如果设置为None , 将会使用产线默认模型。 |
str |
None |
text_recognition_model_dir |
文本识别模型的目录路径。如果设置为None , 将会下载官方模型。 |
str |
None |
text_recognition_batch_size |
文本识别模型的批处理大小。如果设置为None , 将默认设置批处理大小为1 。 |
int |
None |
use_doc_orientation_classify |
是否使用文档方向分类功能。如果设置为None , 将默认使用产线初始化的该参数值,初始化为True 。 |
bool |
None |
use_doc_unwarping |
是否使用文本图像矫正功能。如果设置为None , 将默认使用产线初始化的该参数值,初始化为True 。 |
bool |
None |
use_textline_orientation |
是否使用文本行方向功能。如果设置为None , 将默认使用产线初始化的该参数值,初始化为True 。 |
bool |
None |
text_det_limit_side_len |
文本检测的最大边长度限制。
|
int |
None |
text_det_limit_type |
文本检测的边长度限制类型。
|
str |
None |
text_det_thresh |
文本检测像素阈值,输出的概率图中,得分大于该阈值的像素点才会被认为是文字像素点。
|
float |
None |
text_det_box_thresh |
文本检测框阈值,检测结果边框内,所有像素点的平均得分大于该阈值时,该结果会被认为是文字区域。
|
float |
None |
text_det_unclip_ratio |
文本检测扩张系数,使用该方法对文字区域进行扩张,该值越大,扩张的面积越大。
|
float |
None |
text_det_input_shape |
文本检测的输入形状。 | tuple |
None |
text_rec_score_thresh |
文本识别阈值,得分大于该阈值的文本结果会被保留。
|
float |
None |
text_rec_input_shape |
文本识别的输入形状。 | tuple |
None |
lang |
使用指定语言的 OCR 模型。
|
str |
None |
ocr_version |
OCR 版本。
|
str |
None |
det_model_dir |
已废弃,请使用text_detection_model_dir 代替。文本检测模型的目录路径。如果设置为None, 将会下载官方模型。 |
str |
None |
det_limit_side_len |
已废弃,请使用text_det_limit_side_len 代替。文本检测的最大边长度限制。 |
int |
None |
det_limit_type |
已废弃,请使用text_det_limit_type 代替。文本检测的边长度限制类型。
|
str |
None |
det_db_thresh |
已废弃,请使用text_det_thresh 代替。文本检测像素阈值,输出的概率图中,得分大于该阈值的像素点才会被认为是文字像素点。
|
float |
None |
det_db_box_thresh |
已废弃,请使用text_det_box_thresh 代替。文本检测框阈值,检测结果边框内,所有像素点的平均得分大于该阈值时,该结果会被认为是文字区域。
|
float |
None |
det_db_unclip_ratio |
已废弃,请使用text_det_unclip_ratio 代替。文本检测扩张系数,使用该方法对文字区域进行扩张,该值越大,扩张的面积越大。
|
float |
None |
rec_model_dir |
已废弃,请使用text_recognition_model_dir 代替。文本识别模型的目录路径。如果设置为None , 将会下载官方模型。 |
str |
None |
rec_batch_num |
已废弃,请使用text_recognition_batch_size 代替。文本识别模型的批处理大小。如果设置为None , 将默认设置批处理大小为1 。 |
int |
None |
use_angle_cls |
已废弃,请使用use_textline_orientation 代替。是否使用文本行方向功能。如果设置为None , 将默认使用产线初始化的该参数值,初始化为True 。 |
bool |
None |
cls_model_dir |
已废弃,请使用text_line_orientation_model_dir 代替。文本行方向模型的目录路径。如果设置为None , 将会下载官方模型。 |
str |
None |
cls_batch_num |
已废弃,请使用text_line_orientation_batch_size 代替。文本行方向模型的批处理大小。如果设置为None , 将默认设置批处理大小为1 。 |
int |
None |
device |
用于推理的设备。支持指定具体卡号。
|
str |
None |
enable_hpi |
是否启用高性能推理。 | bool |
False |
use_tensorrt |
是否使用 TensorRT 进行推理加速。 | bool |
False |
min_subgraph_size |
最小子图大小,用于优化模型子图的计算。 | int |
3 |
precision |
计算精度,如 fp32、fp16。 | str |
fp32 |
enable_mkldnn |
是否启用 MKL-DNN 加速库。如果设置为None , 将默认启用。
|
bool |
None |
cpu_threads |
在 CPU 上进行推理时使用的线程数。 | int |
8 |
paddlex_config |
PaddleX产线配置文件路径。 | str |
None |
运行结果会被打印到终端上:
{'res': {'input_path': './general_ocr_002.png', 'page_index': None, 'model_settings': {'use_doc_preprocessor': True, 'use_textline_orientation': False}, 'doc_preprocessor_res': {'input_path': None, 'page_index': None, 'model_settings': {'use_doc_orientation_classify': False, 'use_doc_unwarping': False}, 'angle': -1}, 'dt_polys': array([[[ 3, 10],
...,
[ 4, 30]],
...,
[[ 99, 456],
...,
[ 99, 479]]], dtype=int16), 'text_det_params': {'limit_side_len': 736, 'limit_type': 'min', 'thresh': 0.3, 'max_side_limit': 4000, 'box_thresh': 0.6, 'unclip_ratio': 1.5}, 'text_type': 'general', 'textline_orientation_angles': array([-1, ..., -1]), 'text_rec_score_thresh': 0.0, 'rec_texts': ['www.997700', '', 'Cm', '登机牌', 'BOARDING', 'PASS', 'CLASS', '序号SERIAL NO.', '座位号', 'SEAT NO.', '航班FLIGHT', '日期DATE', '舱位', '', 'W', '035', '12F', 'MU2379', '03DEc', '始发地', 'FROM', '登机口', 'GATE', '登机时间BDT', '目的地TO', '福州', 'TAIYUAN', 'G11', 'FUZHOU', '身份识别IDNO.', '姓名NAME', 'ZHANGQIWEI', '票号TKT NO.', '张祺伟', '票价FARE', 'ETKT7813699238489/1', '登机口于起飞前10分钟关闭 GATESCL0SE10MINUTESBEFOREDEPARTURETIME'], 'rec_scores': array([0.67634439, ..., 0.97416091]), 'rec_polys': array([[[ 3, 10],
...,
[ 4, 30]],
...,
[[ 99, 456],
...,
[ 99, 479]]], dtype=int16), 'rec_boxes': array([[ 3, ..., 30],
...,
[ 99, ..., 479]], dtype=int16)}}
若指定了save_path
,则会保存可视化结果在save_path
下。可视化结果如下:
2.2 Python脚本方式集成¶
命令行方式是为了快速体验查看效果,一般来说,在项目中,往往需要通过代码集成,您可以通过几行代码即可完成产线的快速推理,推理代码如下:
from paddleocr import PaddleOCR
ocr = PaddleOCR(
use_doc_orientation_classify=False, # 通过 use_doc_orientation_classify 参数指定不使用文档方向分类模型
use_doc_unwarping=False, # 通过 use_doc_unwarping 参数指定不使用文本图像矫正模型
use_textline_orientation=False, # 通过 use_textline_orientation 参数指定不使用文本行方向分类模型
)
# ocr = PaddleOCR(lang="en") # 通过 lang 参数来使用英文模型
# ocr = PaddleOCR(ocr_version="PP-OCRv4") # 通过 ocr_version 参数来使用 PP-OCR 其他版本
# ocr = PaddleOCR(device="gpu") # 通过 device 参数使得在模型推理时使用 GPU
result = ocr.predict("./general_ocr_002.png")
for res in result:
res.print()
res.save_to_img("output")
res.save_to_json("output")
在上述 Python 脚本中,执行了如下几个步骤:
(1)通过 PaddleOCR()
实例化 OCR 产线对象,具体参数说明如下:
参数 | 参数说明 | 参数类型 | 默认值 |
---|---|---|---|
doc_orientation_classify_model_name |
文档方向分类模型的名称。如果设置为None , 将会使用产线默认模型。 |
str |
None |
doc_orientation_classify_model_dir |
文档方向分类模型的目录路径。如果设置为None , 将会下载官方模型。 |
str |
None |
doc_unwarping_model_name |
文本图像矫正模型的名称。如果设置为None , 将会使用产线默认模型。 |
str |
None |
doc_unwarping_model_dir |
文本图像矫正模型的目录路径。如果设置为None , 将会下载官方模型。 |
str |
None |
text_detection_model_name |
文本检测模型的名称。如果设置为None , 将会使用产线默认模型。 |
str |
None |
text_detection_model_dir |
文本检测模型的目录路径。如果设置为None , 将会下载官方模型。 |
str |
None |
text_line_orientation_model_name |
文本行方向模型的名称。如果设置为None , 将会使用产线默认模型。 |
str |
None |
text_line_orientation_model_dir |
文本行方向模型的目录路径。如果设置为None , 将会下载官方模型。 |
str |
None |
text_line_orientation_batch_size |
文本行方向模型的批处理大小。如果设置为None , 将默认设置批处理大小为1 。 |
int |
None |
text_recognition_model_name |
文本识别模型的名称。如果设置为None , 将会使用产线默认模型。 |
str |
None |
text_recognition_model_dir |
文本识别模型的目录路径。如果设置为None , 将会下载官方模型。 |
str |
None |
text_recognition_batch_size |
文本识别模型的批处理大小。如果设置为None , 将默认设置批处理大小为1 。 |
int |
None |
use_doc_orientation_classify |
是否使用文档方向分类功能。如果设置为None , 将默认使用产线初始化的该参数值,初始化为True 。 |
bool |
None |
use_doc_unwarping |
是否使用文本图像矫正功能。如果设置为None , 将默认使用产线初始化的该参数值,初始化为True 。 |
bool |
None |
use_textline_orientation |
是否使用文本行方向功能。如果设置为None , 将默认使用产线初始化的该参数值,初始化为True 。 |
bool |
None |
text_det_limit_side_len |
文本检测的最大边长度限制。
|
int |
None |
text_det_limit_type |
文本检测的边长度限制类型。
|
str |
None |
text_det_thresh |
文本检测像素阈值,输出的概率图中,得分大于该阈值的像素点才会被认为是文字像素点。
|
float |
None |
text_det_box_thresh |
文本检测框阈值,检测结果边框内,所有像素点的平均得分大于该阈值时,该结果会被认为是文字区域。
|
float |
None |
text_det_unclip_ratio |
文本检测扩张系数,使用该方法对文字区域进行扩张,该值越大,扩张的面积越大。
|
float |
None |
text_det_input_shape |
文本检测的输入形状。 | tuple |
None |
text_rec_score_thresh |
文本识别阈值,得分大于该阈值的文本结果会被保留。
|
float |
None |
text_rec_input_shape |
文本识别的输入形状。 | tuple |
None |
lang |
使用指定语言的 OCR 模型。
|
str |
None |
ocr_version |
OCR 版本。
|
str |
None |
device |
用于推理的设备。支持指定具体卡号。
|
str |
None |
enable_hpi |
是否启用高性能推理。 | bool |
False |
use_tensorrt |
是否使用 TensorRT 进行推理加速。 | bool |
False |
min_subgraph_size |
最小子图大小,用于优化模型子图的计算。 | int |
3 |
precision |
计算精度,如 fp32、fp16。 | str |
fp32 |
enable_mkldnn |
是否启用 MKL-DNN 加速库。如果设置为None , 将默认启用。
|
bool |
None |
cpu_threads |
在 CPU 上进行推理时使用的线程数。 | int |
8 |
paddlex_config |
PaddleX产线配置文件路径。 | str |
None |
(2)调用 OCR 产线对象的 predict()
方法进行推理预测,该方法会返回一个结果列表。另外,产线还提供了 predict_iter()
方法。两者在参数接受和结果返回方面是完全一致的,区别在于 predict_iter()
返回的是一个 generator
,能够逐步处理和获取预测结果,适合处理大型数据集或希望节省内存的场景。可以根据实际需求选择使用这两种方法中的任意一种。以下是 predict()
方法的参数及其说明:
参数 | 参数说明 | 参数类型 | 默认值 |
---|---|---|---|
input |
待预测数据,支持多种输入类型,必填。
|
Python Var|str|list |
|
device |
与实例化时的参数相同。 | str |
None |
use_doc_orientation_classify |
是否在推理时使用文档方向分类模块。 | bool |
None |
use_doc_unwarping |
是否在推理时使用文本图像矫正模块。 | bool |
None |
use_textline_orientation |
是否在推理时使用文本行方向分类模块。 | bool |
None |
text_det_limit_side_len |
与实例化时的参数相同。 | int |
None |
text_det_limit_type |
与实例化时的参数相同。 | str |
None |
text_det_thresh |
与实例化时的参数相同。 | float |
None |
text_det_box_thresh |
与实例化时的参数相同。 | float |
None |
text_det_unclip_ratio |
与实例化时的参数相同。 | float |
None |
text_rec_score_thresh |
与实例化时的参数相同。 | float |
None |
(3)对预测结果进行处理,每个样本的预测结果均为对应的Result对象,且支持打印、保存为图片、保存为json
文件的操作:
方法 | 方法说明 | 参数 | 参数类型 | 参数说明 | 默认值 |
---|---|---|---|---|---|
print() |
打印结果到终端 | format_json |
bool |
是否对输出内容进行使用 JSON 缩进格式化 |
True |
indent |
int |
指定缩进级别,以美化输出的 JSON 数据,使其更具可读性,仅当 format_json 为 True 时有效 |
4 | ||
ensure_ascii |
bool |
控制是否将非 ASCII 字符转义为 Unicode 。设置为 True 时,所有非 ASCII 字符将被转义;False 则保留原始字符,仅当format_json 为True 时有效 |
False |
||
save_to_json() |
将结果保存为json格式的文件 | save_path |
str |
保存的文件路径,当为目录时,保存文件命名与输入文件类型命名一致 | 无 |
indent |
int |
指定缩进级别,以美化输出的 JSON 数据,使其更具可读性,仅当 format_json 为 True 时有效 |
4 | ||
ensure_ascii |
bool |
控制是否将非 ASCII 字符转义为 Unicode 。设置为 True 时,所有非 ASCII 字符将被转义;False 则保留原始字符,仅当format_json 为True 时有效 |
False |
||
save_to_img() |
将结果保存为图像格式的文件 | save_path |
str |
保存的文件路径,支持目录或文件路径 | 无 |
属性 | 属性说明 |
---|---|
json |
获取预测的 json 格式的结果 |
img |
获取格式为 dict 的可视化图像 |
3. 开发集成/部署¶
如果通用 OCR 产线可以达到您对产线推理速度和精度的要求,您可以直接进行开发集成/部署。
若您需要将通用 OCR 产线直接应用在您的Python项目中,可以参考2.2 Python脚本方式集成中的示例代码。
此外,PaddleOCR 也提供了其他两种部署方式,详细说明如下:
🚀 高性能推理:在实际生产环境中,许多应用对部署策略的性能指标(尤其是响应速度)有着较严苛的标准,以确保系统的高效运行与用户体验的流畅性。为此,PaddleOCR 提供高性能推理功能,旨在对模型推理及前后处理进行深度性能优化,实现端到端流程的显著提速,详细的高性能推理流程请参考高性能推理。
☁️ 服务化部署:服务化部署是实际生产环境中常见的一种部署形式。通过将推理功能封装为服务,客户端可以通过网络请求来访问这些服务,以获取推理结果。详细的产线服务化部署流程请参考服务化部署。
以下是基础服务化部署的API参考与多语言服务调用示例:
API参考
对于服务提供的主要操作:
- HTTP请求方法为POST。
- 请求体和响应体均为JSON数据(JSON对象)。
- 当请求处理成功时,响应状态码为
200
,响应体的属性如下:
名称 | 类型 | 含义 |
---|---|---|
logId |
string |
请求的UUID。 |
errorCode |
integer |
错误码。固定为0 。 |
errorMsg |
string |
错误说明。固定为"Success" 。 |
result |
object |
操作结果。 |
- 当请求处理未成功时,响应体的属性如下:
名称 | 类型 | 含义 |
---|---|---|
logId |
string |
请求的UUID。 |
errorCode |
integer |
错误码。与响应状态码相同。 |
errorMsg |
string |
错误说明。 |
服务提供的主要操作如下:
infer
获取图像OCR结果。
POST /ocr
- 请求体的属性如下:
名称 | 类型 | 含义 | 是否必填 |
---|---|---|---|
file |
string |
服务器可访问的图像文件或PDF文件的URL,或上述类型文件内容的Base64编码结果。默认对于超过10页的PDF文件,只有前10页的内容会被处理。 要解除页数限制,请在产线配置文件中添加以下配置:
|
是 |
fileType |
integer | null |
文件类型。0 表示PDF文件,1 表示图像文件。若请求体无此属性,则将根据URL推断文件类型。 |
否 |
useDocOrientationClassify |
boolean | null |
请参阅产线对象中 predict 方法的 use_doc_orientation_classify 参数相关说明。 |
否 |
useDocUnwarping |
boolean | null |
请参阅产线对象中 predict 方法的 use_doc_unwarping 参数相关说明。 |
否 |
useTextlineOrientation |
boolean | null |
请参阅产线对象中 predict 方法的 use_textline_orientation 参数相关说明。 |
否 |
textDetLimitSideLen |
integer | null |
请参阅产线对象中 predict 方法的 text_det_limit_side_len 参数相关说明。 |
否 |
textDetLimitType |
string | null |
请参阅产线对象中 predict 方法的 text_det_limit_type 参数相关说明。 |
否 |
textDetThresh |
number | null |
请参阅产线对象中 predict 方法的 text_det_thresh 参数相关说明。 |
否 |
textDetBoxThresh |
number | null |
请参阅产线对象中 predict 方法的 text_det_box_thresh 参数相关说明。 |
否 |
textDetUnclipRatio |
number | null |
请参阅产线对象中 predict 方法的 text_det_unclip_ratio 参数相关说明。 |
否 |
textRecScoreThresh |
number | null |
请参阅产线对象中 predict 方法的 text_rec_score_thresh 参数相关说明。 |
否 |
- 请求处理成功时,响应体的
result
具有如下属性:
名称 | 类型 | 含义 |
---|---|---|
ocrResults |
object |
OCR结果。数组长度为1(对于图像输入)或实际处理的文档页数(对于PDF输入)。对于PDF输入,数组中的每个元素依次表示PDF文件中实际处理的每一页的结果。 |
dataInfo |
object |
输入数据信息。 |
ocrResults
中的每个元素为一个object
,具有如下属性:
名称 | 类型 | 含义 |
---|---|---|
prunedResult |
object |
产线对象的 predict 方法生成结果的 JSON 表示中 res 字段的简化版本,其中去除了 input_path 和 page_index 字段。 |
ocrImage |
string | null |
OCR结果图,其中标注检测到的文本位置。图像为JPEG格式,使用Base64编码。 |
docPreprocessingImage |
string | null |
可视化结果图像。图像为JPEG格式,使用Base64编码。 |
inputImage |
string | null |
输入图像。图像为JPEG格式,使用Base64编码。 |
多语言调用服务示例
Python
import base64
import requests
API_URL = "http://localhost:8080/ocr"
file_path = "./demo.jpg"
with open(file_path, "rb") as file:
file_bytes = file.read()
file_data = base64.b64encode(file_bytes).decode("ascii")
payload = {"file": file_data, "fileType": 1}
response = requests.post(API_URL, json=payload)
assert response.status_code == 200
result = response.json()["result"]
for i, res in enumerate(result["ocrResults"]):
print(res["prunedResult"])
ocr_img_path = f"ocr_{i}.jpg"
with open(ocr_img_path, "wb") as f:
f.write(base64.b64decode(res["ocrImage"]))
print(f"Output image saved at {ocr_img_path}")
4. 二次开发¶
如果 通用OCR 产线提供的默认模型权重在您的场景中,精度或速度不满意,您可以尝试利用您自己拥有的特定领域或应用场景的数据对现有模型进行进一步的微调,以提升 通用OCR 产线的在您的场景中的识别效果。
4.1 模型微调¶
通用 OCR 产线包含若干模块,模型产线的效果如果不及预期,可能来自于其中任何一个模块。您可以对识别效果差的图片进行分析,进而确定是哪个模块存在问题,并参考以下表格中对应的微调教程链接进行模型微调。
情形 | 微调模块 | 微调参考链接 |
---|---|---|
整图旋转矫正不准 | 文档图像方向分类模块 | 链接 |
图像扭曲矫正不准 | 文本图像矫正模块 | 暂不支持微调 |
文本行旋转矫正不准 | 文本行方向分类模块 | 链接 |
文本漏检 | 文本检测模块 | 链接 |
文本内容不准 | 文本识别模块 | 链接 |
4.2 模型应用¶
当您使用私有数据集完成微调训练后,可获得本地模型权重文件,然后可以通过自定义产线配置文件的方式,使用微调后的模型权重。
- 获取产线配置文件
可调用 PaddleOCR 中 通用OCR 产线对象的 export_paddlex_config_to_yaml
方法,将当前产线配置导出为 YAML 文件:
from paddleocr import PaddleOCR
pipeline = PaddleOCR()
pipeline.export_paddlex_config_to_yaml("PaddleOCR.yaml")
- 修改配置文件
在得到默认的产线配置文件后,将微调后模型权重的本地路径替换至产线配置文件中的对应位置即可。例如
......
SubModules:
TextDetection:
box_thresh: 0.6
limit_side_len: 960
limit_type: max
max_side_limit: 4000
model_dir: null # 替换为微调后的文本测模型权重路径
model_name: PP-OCRv5_server_det
module_name: text_detection
thresh: 0.3
unclip_ratio: 1.5
TextLineOrientation:
batch_size: 6
model_dir: null
model_name: PP-LCNet_x0_25_textline_ori
module_name: textline_orientation
TextRecognition:
batch_size: 6
model_dir: null # 替换为微调后的文本识模型权重路径
model_name: PP-OCRv5_server_rec
module_name: text_recognition
score_thresh: 0.0
......
在产线配置文件中,不仅包含 PaddleOCR CLI 和 Python API 支持的参数,还可进行更多高级配置,具体信息可在 PaddleX模型产线使用概览 中找到对应的产线使用教程,参考其中的详细说明,根据需求调整各项配置。
- 在 CLI 中加载产线配置文件
在修改完成配置文件后,通过命令行的 --paddlex_config 参数指定修改后的产线配置文件的路径,PaddleOCR 会读取其中的内容作为产线配置。示例如下:
- 在 Python API 中加载产线配置文件
初始化产线对象时,可通过 paddlex_config 参数传入 PaddleX 产线配置文件路径或配置字典,PaddleOCR 会读取其中的内容作为产线配置。示例如下: