跳转至

表格单元格检测模块使用教程

一、概述

表格单元格检测模块是表格识别任务的关键组成部分,负责在表格图像中定位和标记每个单元格区域,该模块的性能直接影响到整个表格识别过程的准确性和效率。表格单元格检测模块通常会输出各个单元格区域的边界框(Bounding Boxes),这些边界框将作为输入传递给表格识别相关产线进行后续处理。

二、支持模型列表

模型模型下载链接 mAP(%) GPU推理耗时(ms)
[常规模式 / 高性能模式]
CPU推理耗时(ms)
[常规模式 / 高性能模式]
模型存储大小 (M) 介绍
RT-DETR-L_wired_table_cell_det 推理模型/训练模型 82.7 35.00 / 10.45 495.51 / 495.51 124M RT-DETR 是一个实时的端到端目标检测模型。百度飞桨视觉团队基于 RT-DETR-L 作为基础模型,在自建表格单元格检测数据集上完成预训练,实现了对有线表格、无线表格均有较好性能的表格单元格检测。
RT-DETR-L_wireless_table_cell_det 推理模型/训练模型

测试环境说明:

  • 性能测试环境
    • 测试数据集:自建的内部评测集。
    • 硬件配置:
      • GPU:NVIDIA Tesla T4
      • CPU:Intel Xeon Gold 6271C @ 2.60GHz
      • 其他环境:Ubuntu 20.04 / cuDNN 8.6 / TensorRT 8.5.2.2
  • 推理模式说明
模式 GPU配置 CPU配置 加速技术组合
常规模式 FP32精度 / 无TRT加速 FP32精度 / 8线程 PaddleInference
高性能模式 选择先验精度类型和加速策略的最优组合 FP32精度 / 8线程 选择先验最优后端(Paddle/OpenVINO/TRT等)

三、快速开始

❗ 在快速开始前,请先安装 PaddleOCR 的 wheel 包,详细请参考 安装教程

使用一行命令即可快速体验:

paddleocr table_cells_detection -i https://paddle-model-ecology.bj.bcebos.com/paddlex/imgs/demo_image/table_recognition.jpg

您也可以将表格单元格检测的模块中的模型推理集成到您的项目中。运行以下代码前,请您下载示例图片到本地。

from paddleocr import TableCellsDetection
model = TableCellsDetection(model_name="RT-DETR-L_wired_table_cell_det")
output = model.predict("table_recognition.jpg", threshold=0.3, batch_size=1)
for res in output:
    res.print(json_format=False)
    res.save_to_img("./output/")
    res.save_to_json("./output/res.json")

运行后,得到的结果为:

{'res': {'input_path': 'table_recognition.jpg', 'page_index': None, 'boxes': [{'cls_id': 0, 'label': 'cell', 'score': 0.9698355197906494, 'coordinate': [2.3011515, 0, 546.29926, 30.530712]}, {'cls_id': 0, 'label': 'cell', 'score': 0.9690820574760437, 'coordinate': [212.37508, 64.62493, 403.58868, 95.61413]}, {'cls_id': 0, 'label': 'cell', 'score': 0.9668057560920715, 'coordinate': [212.46791, 30.311079, 403.7182, 64.62613]}, {'cls_id': 0, 'label': 'cell', 'score': 0.966505229473114, 'coordinate': [403.56082, 64.62544, 546.83215, 95.66117]}, {'cls_id': 0, 'label': 'cell', 'score': 0.9662341475486755, 'coordinate': [109.48873, 64.66485, 212.5177, 95.631294]}, {'cls_id': 0, 'label': 'cell', 'score': 0.9654079079627991, 'coordinate': [212.39197, 95.63037, 403.60852, 126.78792]}, {'cls_id': 0, 'label': 'cell', 'score': 0.9653300642967224, 'coordinate': [2.2320926, 64.62229, 109.600494, 95.59732]}, {'cls_id': 0, 'label': 'cell', 'score': 0.9639787673950195, 'coordinate': [403.5752, 30.562355, 546.98975, 64.61531]}, {'cls_id': 0, 'label': 'cell', 'score': 0.9636150002479553, 'coordinate': [2.1537683, 30.410172, 109.568306, 64.62762]}, {'cls_id': 0, 'label': 'cell', 'score': 0.9631900191307068, 'coordinate': [2.0534437, 95.57448, 109.57601, 126.71458]}, {'cls_id': 0, 'label': 'cell', 'score': 0.9631181359291077, 'coordinate': [403.65976, 95.68139, 546.84766, 126.713394]}, {'cls_id': 0, 'label': 'cell', 'score': 0.9614537358283997, 'coordinate': [109.56504, 30.391184, 212.65425, 64.6444]}, {'cls_id': 0, 'label': 'cell', 'score': 0.9607433080673218, 'coordinate': [109.525795, 95.62622, 212.44917, 126.8258]}]}}

参数含义如下:

  • input_path:输入的待预测图像的路径
  • page_index:如果输入是PDF文件,则表示当前是PDF的第几页,否则为 None
  • boxes:预测的目标框信息,一个字典列表。每个字典代表一个检出的目标,包含以下信息:
  • cls_id:类别ID,一个整数
  • label:类别标签,一个字符串
  • score:目标框置信度,一个浮点数
  • coordinate:目标框坐标,一个浮点数列表,格式为[xmin, ymin, xmax, ymax]

可视化图像如下:

相关方法、参数等说明如下:

  • TableCellsDetection实例化表格单元格检测模型(此处以RT-DETR-L_wired_table_cell_det为例),具体说明如下:
参数 参数说明 参数类型 可选项 默认值
model_name 模型名称 str
model_dir 模型存储路径 str
device 模型推理设备 str 支持指定GPU具体卡号,如“gpu:0”,其他硬件具体卡号,如“npu:0”,CPU如“cpu”。 gpu:0
use_hpip 是否启用高性能推理插件 bool False
hpi_config 高性能推理配置 dict | None None
img_size 输入图像大小 int/list
  • int, 如 640 , 表示将输入图像resize到640x640大小
  • 列表, 如 [640, 512] , 表示将输入图像resize到宽为640,高为512大小
threshold 用于过滤掉低置信度预测结果的阈值。在表格单元格检测任务中,适当降低阈值可能有助于获得更准确的结果 float/dict
  • float,如 0.2, 表示过滤掉所有阈值小于0.2的目标框
  • 字典,字典的key为int类型,代表cls_id,val为float类型阈值。如 {0: 0.45, 2: 0.48, 7: 0.4},表示对cls_id为0的类别应用阈值0.45、cls_id为1的类别应用阈值0.48、cls_id为7的类别应用阈值0.4
  • 其中,model_name 必须指定,在此基础上,指定 model_dir 时,使用用户自定义的模型。

  • 调用表格单元格检测模型的 predict() 方法进行推理预测,该方法会返回一个结果列表。另外,本模块还提供了 predict_iter() 方法。两者在参数接受和结果返回方面是完全一致的,区别在于 predict_iter() 返回的是一个 generator,能够逐步处理和获取预测结果,适合处理大型数据集或希望节省内存的场景。可以根据实际需求选择使用这两种方法中的任意一种。predict() 方法参数有 inputbatch_sizethreshold,具体说明如下:

参数 参数说明 参数类型 可选项 默认值
input 待预测数据,支持多种输入类型 Python Var/str/list
  • Python变量,如numpy.ndarray表示的图像数据
  • 文件路径,如图像文件的本地路径:/root/data/img.jpg
  • URL链接,如图像文件的网络URL:示例
  • 本地目录,该目录下需包含待预测数据文件,如本地路径:/root/data/
  • 列表,列表元素需为上述类型数据,如[numpy.ndarray, numpy.ndarray]["/root/data/img1.jpg", "/root/data/img2.jpg"]["/root/data1", "/root/data2"]
batch_size 批大小 int 任意整数 1
threshold 用于过滤掉低置信度预测结果的阈值 float/dict
  • float,如 0.2, 表示过滤掉所有阈值小于0.2的目标框
  • 字典,字典的key为int类型,代表cls_id,val为float类型阈值。如 {0: 0.45, 2: 0.48, 7: 0.4},表示对cls_id为0的类别应用阈值0.45、cls_id为1的类别应用阈值0.48、cls_id为7的类别应用阈值0.4
  • 对预测结果进行处理,每个样本的预测结果均为对应的Result对象,且支持打印、保存为图片、保存为json文件的操作:
方法 方法说明 参数 参数类型 参数说明 默认值
print() 打印结果到终端 format_json bool 是否对输出内容进行使用 JSON 缩进格式化 True
indent int 指定缩进级别,以美化输出的 JSON 数据,使其更具可读性,仅当 format_jsonTrue 时有效 4
ensure_ascii bool 控制是否将非 ASCII 字符转义为 Unicode。设置为 True 时,所有非 ASCII 字符将被转义;False 则保留原始字符,仅当format_jsonTrue时有效 False
save_to_json() 将结果保存为json格式的文件 save_path str 保存的文件路径,当为目录时,保存文件命名与输入文件类型命名一致
indent int 指定缩进级别,以美化输出的 JSON 数据,使其更具可读性,仅当 format_jsonTrue 时有效 4
ensure_ascii bool 控制是否将非 ASCII 字符转义为 Unicode。设置为 True 时,所有非 ASCII 字符将被转义;False 则保留原始字符,仅当format_jsonTrue时有效 False
save_to_img() 将结果保存为图像格式的文件 save_path str 保存的文件路径,当为目录时,保存文件命名与输入文件类型命名一致
  • 此外,也支持通过属性获取带结果的可视化图像和预测结果,具体如下:
属性 属性说明
json 获取预测的json格式的结果
img 获取可视化图像

四、二次开发

由于 PaddleOCR 并不直接提供表格单元格检测模块的训练,因此,如果需要训练表格单元格检测模型,可以参考 PaddleX 表格单元格检测模块二次开发部分进行训练。训练后的模型可以无缝集成到 PaddleOCR 的 API 中进行推理。

五、FAQ

评论