Skip to content

Text Detection Module Usage Guide

1. Overview

The text detection module is a critical component of OCR (Optical Character Recognition) systems, responsible for locating and marking text-containing regions in images. The performance of this module directly impacts the accuracy and efficiency of the entire OCR system. The text detection module typically outputs bounding boxes for text regions, which are then passed to the text recognition module for further processing.

2. Supported Models List

ModelModel Download Link Detection Hmean (%) GPU Inference Time (ms)
[Standard Mode / High-Performance Mode]
CPU Inference Time (ms)
[Standard Mode / High-Performance Mode]
Model Size (MB) Description
PP-OCRv5_server_detInference Model/Training Model 83.8 89.55 / 70.19 371.65 / 371.65 84.3 PP-OCRv5 server-side text detection model with higher accuracy, suitable for deployment on high-performance servers
PP-OCRv5_mobile_detInference Model/Training Model 79.0 8.79 / 3.13 51.00 / 28.58 4.7 PP-OCRv5 mobile-side text detection model with higher efficiency, suitable for deployment on edge devices
PP-OCRv4_server_detInference Model/Training Model 69.2 83.34 / 80.91 442.58 / 442.58 109 PP-OCRv4 server-side text detection model with higher accuracy, suitable for deployment on high-performance servers
PP-OCRv4_mobile_detInference Model/Training Model 63.8 8.79 / 3.13 51.00 / 28.58 4.7 PP-OCRv4 mobile-side text detection model with higher efficiency, suitable for deployment on edge devices

Testing Environment:

  • Performance Testing Environment
    • Test Dataset: PaddleOCR3.0 newly constructed multilingual dataset (including Chinese, Traditional Chinese, English, Japanese), covering street scenes, web images, documents, handwriting, blur, rotation, distortion, etc., totaling 2677 images.
    • Hardware Configuration:
      • GPU: NVIDIA Tesla T4
      • CPU: Intel Xeon Gold 6271C @ 2.60GHz
      • Other Environments: Ubuntu 20.04 / cuDNN 8.6 / TensorRT 8.5.2.2
  • Inference Mode Description
Mode GPU Configuration CPU Configuration Acceleration Techniques
Standard Mode FP32 precision / No TRT acceleration FP32 precision / 8 threads PaddleInference
High-Performance Mode Optimal combination of precision types and acceleration strategies FP32 precision / 8 threads Optimal backend selection (Paddle/OpenVINO/TRT, etc.)

3. Quick Start

❗ Before starting, please install the PaddleOCR wheel package. Refer to the Installation Guide for details.

Use the following command for a quick experience:

paddleocr text_detection -i https://paddle-model-ecology.bj.bcebos.com/paddlex/imgs/demo_image/general_ocr_001.png

You can also integrate the model inference into your project. Before running the following code, download the example image locally.

from paddleocr import TextDetection
model = TextDetection(model_name="PP-OCRv5_mobile_det")
output = model.predict("general_ocr_001.png", batch_size=1)
for res in output:
    res.print()
    res.save_to_img(save_path="./output/")
    res.save_to_json(save_path="./output/res.json")

The output will be:

{'res': {'input_path': 'general_ocr_001.png', 'page_index': None, 'dt_polys': array([[[ 75, 549],
        ...,
        [ 77, 586]],

       ...,

       [[ 37, 408],
        ...,
        [ 39, 453]]], dtype=int16), 'dt_scores': [0.832930755107492, 0.8186143846140158, 0.8591595100376676, 0.8718863959111733]}}

Output parameter meanings: - input_path: Path of the input image. - page_index: If the input is a PDF, this indicates the current page number; otherwise, it is None. - dt_polys: Predicted text detection boxes, where each box contains four vertices (x, y coordinates). - dt_scores: Confidence scores of the predicted text detection boxes.

Visualization example:

Method and parameter descriptions:

  • Instantiate the text detection model (e.g., PP-OCRv5_mobile_det):
Parameter Description Type Options Default
model_name Model name str All PaddleX-supported text detection model names Required
model_dir Model storage path str N/A N/A
device Inference device str GPU (e.g., "gpu:0"), NPU (e.g., "npu:0"), CPU ("cpu") gpu:0
limit_side_len Image side length limit for detection int/None Positive integer or None (uses default model config) None
limit_type Side length restriction type str/None "min" (shortest side ≥ limit) or "max" (longest side ≤ limit) None
thresh Pixel score threshold for text detection float/None Positive float or None (uses default model config) None
box_thresh Average score threshold for text regions float/None Positive float or None (uses default model config) None
unclip_ratio Expansion coefficient for Vatti clipping algorithm float/None Positive float or None (uses default model config) None
use_hpip Enable high-performance inference plugin bool N/A False
hpi_config High-performance inference configuration dict | None N/A None
  • The predict() method parameters:
Parameter Description Type Options Default
input Input data (image path, URL, directory, or list) Python Var/str/dict/list Numpy array, file path, URL, directory, or list of these Required
batch_size Batch size int Positive integer 1
limit_side_len Image side length limit for detection int/None Positive integer or None (uses model default) None
limit_type Side length restriction type str/None "min" or "max" None
thresh Pixel score threshold for text detection float/None Positive float or None (uses model default) None
box_thresh Average score threshold for text regions float/None Positive float or None (uses model default) None
unclip_ratio Expansion coefficient for Vatti clipping algorithm float/None Positive float or None (uses model default) None
  • Result processing methods:
Method Description Parameters Type Description Default
print() Print results to terminal format_json bool Format output as JSON True
indent int JSON indentation level 4
ensure_ascii bool Escape non-ASCII characters False
save_to_json() Save results as JSON file save_path str Output file path Required
indent int JSON indentation level 4
ensure_ascii bool Escape non-ASCII characters False
save_to_img() Save results as image save_path str Output file path Required
  • Additional attributes:
Attribute Description
json Get prediction results in JSON format
img Get visualization image as a dictionary

4. Custom Development

If the above models do not meet your requirements, follow these steps for custom development (using PP-OCRv5_server_det as an example). First, prepare a text detection dataset (refer to the Demo Dataset format). After preparation, proceed with model training and export. The exported model can be integrated into the API. Ensure PaddleOCR dependencies are installed as per the Installation Guide.

4.1 Dataset and Pretrained Model Preparation

4.1.1 Prepare Dataset

# Download example dataset
wget https://paddle-model-ecology.bj.bcebos.com/paddlex/data/ocr_det_dataset_examples.tar
tar -xf ocr_det_dataset_examples.tar

4.1.2 Download Pretrained Model

# Download PP-OCRv5_server_det pretrained model
wget https://paddle-model-ecology.bj.bcebos.com/paddlex/official_pretrained_model/PP-OCRv5_server_det_pretrained.pdparams 

4.2 Model Training

PaddleOCR modularizes the code. To train the PP-OCRv5_server_det model, use its configuration file.

Training command:

# Single-GPU training (default)
python3 tools/train.py -c configs/det/PP-OCRv5/PP-OCRv5_server_det.yml \
    -o Global.pretrained_model=./PP-OCRv5_server_det_pretrained.pdparams \
    Train.dataset.data_dir=./ocr_det_dataset_examples \
    Train.dataset.label_file_list=[./ocr_det_dataset_examples/train.txt] \
    Eval.dataset.data_dir=./ocr_det_dataset_examples \
    Eval.dataset.label_file_list=[./ocr_det_dataset_examples/val.txt]

# Multi-GPU training (specify GPUs with --gpus)
python3 -m paddle.distributed.launch --gpus '0,1,2,3' tools/train.py \
    -c configs/det/PP-OCRv5/PP-OCRv5_server_det.yml \
    -o Global.pretrained_model=./PP-OCRv5_server_det_pretrained.pdparams \
    Train.dataset.data_dir=./ocr_det_dataset_examples \
    Train.dataset.label_file_list=[./ocr_det_dataset_examples/train.txt] \
    Eval.dataset.data_dir=./ocr_det_dataset_examples \
    Eval.dataset.label_file_list=[./ocr_det_dataset_examples/val.txt]

4.3 Model Evaluation

You can evaluate trained weights (e.g., output/PP-OCRv5_server_det/best_accuracy.pdparams) using the following command:

# Note: Set pretrained_model to local path. For custom-trained models, modify the path and filename as {path/to/weights}/{model_name}.
# Demo dataset evaluation
python3 tools/eval.py -c configs/det/PP-OCRv5/PP-OCRv5_server_det.yml \
    -o Global.pretrained_model=output/PP-OCRv5_server_det/best_accuracy.pdparams \
    Eval.dataset.data_dir=./ocr_det_dataset_examples \
    Eval.dataset.label_file_list=[./ocr_det_dataset_examples/val.txt] 

4.4 Model Export

python3 tools/export_model.py -c configs/det/PP-OCRv5/PP-OCRv5_server_det.yml -o \
    Global.pretrained_model=output/PP-OCRv5_server_det/best_accuracy.pdparams \
    Global.save_inference_dir="./PP-OCRv5_server_det_infer/"

After export, the static graph model will be saved in ./PP-OCRv5_server_det_infer/ with the following files:

./PP-OCRv5_server_det_infer/
├── inference.json
├── inference.pdiparams
├── inference.yml
The custom development is now complete. This static graph model can be directly integrated into PaddleOCR's API.

5. FAQ

  • Use parameters limit_type and limit_side_len to constrain image dimensions.
  • limit_type options: [max, min]
  • limit_side_len: Positive integer (typically multiples of 32, e.g., 960).
  • For lower-resolution images, use limit_type=min and limit_side_len=960 to balance computational efficiency and detection quality.
  • For higher-resolution images requiring larger detection scales, set limit_side_len to desired values (e.g., 1216).

Comments