文本图像矫正模块使用教程¶
一、概述¶
文本图像矫正的主要目的是针对图像进行几何变换,以纠正图像中的文档扭曲、倾斜、透视变形等问题,以供后续的文本识别进行更加准确。
二、支持模型列表¶
模型 | 模型下载链接 | CER | 模型存储大小(M) | 介绍 |
---|---|---|---|---|
UVDoc | 推理模型/训练模型 | 0.179 | 30.3 M | 高精度文本图像矫正模型 |
测试环境说明:
- 性能测试环境
- 测试数据集:DocUNet benchmark数据集。
-
硬件配置:
- GPU:NVIDIA Tesla T4
- CPU:Intel Xeon Gold 6271C @ 2.60GHz
- 其他环境:Ubuntu 20.04 / cuDNN 8.6 / TensorRT 8.5.2.2
-
推理模式说明
模式 | GPU配置 | CPU配置 | 加速技术组合 |
---|---|---|---|
常规模式 | FP32精度 / 无TRT加速 | FP32精度 / 8线程 | PaddleInference |
高性能模式 | 选择先验精度类型和加速策略的最优组合 | FP32精度 / 8线程 | 选择先验最优后端(Paddle/OpenVINO/TRT等) |
三、快速集成¶
在快速集成前,首先需要安装PaddleX的wheel包,wheel的安装方式请参考 PaddleX本地安装教程。完成wheel包的安装后,几行代码即可完成图像矫正模块的推理,可以任意切换该模块下的模型,您也可以将图像矫正的模块中的模型推理集成到您的项目中。运行以下代码前,请您下载示例图片到本地。
from paddlex import create_model
model = create_model(model_name="UVDoc")
output = model.predict("doc_test.jpg", batch_size=1)
for res in output:
res.print()
res.save_to_img(save_path="./output/")
res.save_to_json(save_path="./output/res.json")
运行后,得到的结果为:
运行结果参数含义如下:
- input_path
:表示输入待矫正图像的路径
- doctr_img
:表示矫正后的图像结果,由于数据过多不便于直接print,所以此处用...
替换,可以通过res.save_to_img()
将预测结果保存为图片,通过res.save_to_json()
将预测结果保存为json文件。
可视化图片如下:
相关方法、参数等说明如下:
create_model
实例化图像矫正模型(此处以UVDoc
为例),具体说明如下:
参数 | 参数说明 | 参数类型 | 可选项 | 默认值 |
---|---|---|---|---|
model_name |
模型名称 | str |
所有PaddleX支持的模型名称 | 无 |
model_dir |
模型存储路径 | str |
无 | 无 |
use_hpip |
是否启用高性能推理 | bool |
无 | False |
-
其中,
model_name
必须指定,指定model_name
后,默认使用 PaddleX 内置的模型参数,在此基础上,指定model_dir
时,使用用户自定义的模型。 -
调用图像矫正模型的
predict()
方法进行推理预测,predict()
方法参数有input
和batch_size
,具体说明如下:
参数 | 参数说明 | 参数类型 | 可选项 | 默认值 |
---|---|---|---|---|
input |
待预测数据,支持多种输入类型 | Python Var /str /dict /list |
|
无 |
batch_size |
批大小 | int |
任意整数 | 1 |
- 对预测结果进行处理,每个样本的预测结果均为对应的Result对象,且支持打印、保存为图片、保存为
json
文件的操作:
方法 | 方法说明 | 参数 | 参数类型 | 参数说明 | 默认值 |
---|---|---|---|---|---|
print() |
打印结果到终端 | format_json |
bool |
是否对输出内容进行使用 JSON 缩进格式化 |
True |
indent |
int |
指定缩进级别,以美化输出的 JSON 数据,使其更具可读性,仅当 format_json 为 True 时有效 |
4 | ||
ensure_ascii |
bool |
控制是否将非 ASCII 字符转义为 Unicode 。设置为 True 时,所有非 ASCII 字符将被转义;False 则保留原始字符,仅当format_json 为True 时有效 |
False |
||
save_to_json() |
将结果保存为json格式的文件 | save_path |
str |
保存的文件路径,当为目录时,保存文件命名与输入文件类型命名一致 | 无 |
indent |
int |
指定缩进级别,以美化输出的 JSON 数据,使其更具可读性,仅当 format_json 为 True 时有效 |
4 | ||
ensure_ascii |
bool |
控制是否将非 ASCII 字符转义为 Unicode 。设置为 True 时,所有非 ASCII 字符将被转义;False 则保留原始字符,仅当format_json 为True 时有效 |
False |
||
save_to_img() |
将结果保存为图像格式的文件 | save_path |
str |
保存的文件路径,当为目录时,保存文件命名与输入文件类型命名一致 | 无 |
- 此外,也支持通过属性获取带结果的可视化图像和预测结果,具体如下:
属性 | 属性说明 |
---|---|
json |
获取预测的json 格式的结果 |
img |
获取格式为dict 的可视化图像 |
关于更多 PaddleX 的单模型推理的 API 的使用方法,可以参考PaddleX单模型Python脚本使用说明。
四、二次开发¶
当前模块暂时不支持微调训练,仅支持推理集成。关于该模块的微调训练,计划在未来支持。
您也可以利用 PaddleX 高性能推理插件来优化您模型的推理过程,进一步提升效率,详细的流程请参考PaddleX高性能推理指南。