SATRN¶
1. Introduction¶
论文信息:
On Recognizing Texts of Arbitrary Shapes with 2D Self-Attention Junyeop Lee, Sungrae Park, Jeonghun Baek, Seong Joon Oh, Seonghyeon Kim, Hwalsuk Lee CVPR, 2020 Using MJSynth and SynthText two text recognition datasets for training, and evaluating on IIIT, SVT, IC03, IC13, IC15, SVTP, CUTE datasets, the algorithm reproduction effect is as follows:
Model | Backbone | config | Acc | Download link |
---|---|---|---|---|
SATRN | ShallowCNN | 88.05% | configs/rec/rec_satrn.yml | 训练模型 |
2. Environment¶
Please refer to "Environment Preparation" to configure the PaddleOCR environment, and refer to "Project Clone"to clone the project code.
3. Model Training / Evaluation / Prediction¶
Please refer to Text Recognition Tutorial. PaddleOCR modularizes the code, and training different recognition models only requires changing the configuration file.
Training¶
Specifically, after the data preparation is completed, the training can be started. The training command is as follows:
Evaluation¶
Prediction¶
4. Inference and Deployment¶
4.1 Python Inference¶
First, the model saved during the SATRN text recognition training process is converted into an inference model. ( Model download link ), you can use the following command to convert:
For SATRN text recognition model inference, the following commands can be executed:
4.2 C++ Inference¶
Not supported
4.3 Serving¶
Not supported
4.4 More¶
Not supported
5. FAQ¶
Citation¶
@article{lee2019recognizing,
title={On Recognizing Texts of Arbitrary Shapes with 2D Self-Attention},
author={Junyeop Lee and Sungrae Park and Jeonghun Baek and Seong Joon Oh and Seonghyeon Kim and Hwalsuk Lee},
year={2019},
eprint={1910.04396},
archivePrefix={arXiv},
primaryClass={cs.CV}
}