跳转至

场景文本识别算法-SVTRv2

1. 算法简介

SVTRv2算法简介

🔥 该算法由来自复旦大学视觉与学习实验室(FVL)的OpenOCR团队研发,其在PaddleOCR算法模型挑战赛 - 赛题一:OCR端到端识别任务中荣获一等奖,B榜端到端识别精度相比PP-OCRv4提升2.5%,推理速度持平。主要思路:1、检测和识别模型的Backbone升级为RepSVTR;2、识别教师模型升级为SVTRv2,可识别长文本。

模型 配置文件 端到端 下载链接
PP-OCRv4 A榜 62.77%
B榜 62.51%
Model List
SVTRv2(Rec Sever) configs/rec/SVTRv2/rec_svtrv2_ch.yml A榜 68.81% (使用PP-OCRv4检测模型) 训练模型 / 推理模型
RepSVTR(Mobile) 识别
识别蒸馏
检测
B榜 65.07% 识别: 训练模型 / 推理模型
识别蒸馏: 训练模型 / 推理模型
检测: 训练模型 / 推理模型

🚀 快速使用:参考PP-OCR推理说明文档,将检测和识别模型替换为上表中对应的RepSVTR或SVTRv2推理模型即可使用。

2. 环境配置

请先参考《运行环境准备》配置PaddleOCR运行环境,参考《项目克隆》克隆项目代码。

3. 模型训练、评估、预测

3.1 模型训练

训练命令:

#单卡训练(训练周期长,不建议)
python3 tools/train.py -c configs/rec/SVTRv2/rec_repsvtr_gtc.yml

# 多卡训练,通过--gpus参数指定卡号
# Rec 学生模型
python -m paddle.distributed.launch --gpus '0,1,2,3,4,5,6,7'  tools/train.py -c configs/rec/SVTRv2/rec_repsvtr_gtc.yml
# Rec 教师模型
python -m paddle.distributed.launch --gpus '0,1,2,3,4,5,6,7'  tools/train.py -c configs/rec/SVTRv2/rec_svtrv2_gtc.yml
# Rec 蒸馏训练
python -m paddle.distributed.launch --gpus '0,1,2,3,4,5,6,7'  tools/train.py -c configs/rec/SVTRv2/rec_svtrv2_gtc_distill.yml

3.2 评估

# 注意将pretrained_model的路径设置为本地路径。
python3 -m paddle.distributed.launch --gpus '0' tools/eval.py -c configs/rec/SVTRv2/rec_repsvtr_gtc.yml -o Global.pretrained_model=output/rec_repsvtr_gtc/best_accuracy

3.3 预测

使用如下命令进行单张图片预测:

1
2
3
# 注意将pretrained_model的路径设置为本地路径。
python3 tools/infer_rec.py -c tools/eval.py -c configs/rec/SVTRv2/rec_repsvtr_gtc.yml -o Global.pretrained_model=output/rec_repsvtr_gtc/best_accuracy Global.infer_img='./doc/imgs_words_en/word_10.png'
# 预测文件夹下所有图像时,可修改infer_img为文件夹,如 Global.infer_img='./doc/imgs_words_en/'。

4. 推理部署

4.1 Python推理

首先将训练得到best模型,转换成inference model,以RepSVTR为例,可以使用如下命令进行转换:

# 注意将pretrained_model的路径设置为本地路径。
python3 tools/export_model.py -c configs/rec/SVTRv2/rec_repsvtr_gtc.yml -o Global.pretrained_model=output/rec_repsvtr_gtc/best_accuracy Global.save_inference_dir=./inference/rec_repsvtr_infer

注意: 如果您是在自己的数据集上训练的模型,并且调整了字典文件,请注意修改配置文件中的character_dict_path是否为所正确的字典文件。

转换成功后,在目录下有三个文件:

1
2
3
4
./inference/rec_repsvtr_infer/
    ├── inference.pdiparams         # 识别inference模型的参数文件
    ├── inference.pdiparams.info    # 识别inference模型的参数信息,可忽略
    └── inference.pdmodel           # 识别inference模型的program文件

执行如下命令进行模型推理:

python3 tools/infer/predict_rec.py --image_dir='./doc/imgs_words_en/word_10.png' --rec_model_dir='./inference/rec_repsvtr_infer/'
# 预测文件夹下所有图像时,可修改image_dir为文件夹,如 --image_dir='./doc/imgs_words_en/'。

执行命令后,上面图像的预测结果(识别的文本和得分)会打印到屏幕上,示例如下: 结果如下:

Predicts of ./doc/imgs_words_en/word_10.png:('pain', 0.9999998807907104)

注意

  • 如果您调整了训练时的输入分辨率,需要通过参数rec_image_shape设置为您需要的识别图像形状。
  • 在推理时需要设置参数rec_char_dict_path指定字典,如果您修改了字典,请修改该参数为您的字典文件。
  • 如果您修改了预处理方法,需修改tools/infer/predict_rec.py中SVTR的预处理为您的预处理方法。

4.2 C++推理部署

准备好推理模型后,参考cpp infer教程进行操作即可。

4.3 Serving服务化部署

暂不支持

4.4 更多推理部署

  • Paddle2ONNX推理:准备好推理模型后,参考paddle2onnx教程操作。

5. FAQ

引用

@article{Du2022SVTR,
  title     = {SVTR: Scene Text Recognition with a Single Visual Model},
  author    = {Du, Yongkun and Chen, Zhineng and Jia, Caiyan and Yin, Xiaoting and Zheng, Tianlun and Li, Chenxia and Du, Yuning and Jiang, Yu-Gang},
  booktitle = {IJCAI},
  year      = {2022},
  url       = {https://arxiv.org/abs/2205.00159}
}

评论