SEED¶
1. 算法简介¶
论文信息:
SEED: Semantics Enhanced Encoder-Decoder Framework for Scene Text Recognition Qiao, Zhi and Zhou, Yu and Yang, Dongbao and Zhou, Yucan and Wang, Weiping CVPR, 2020
参考DTRB 文字识别训练和评估流程,使用MJSynth和SynthText两个文字识别数据集训练,在IIIT, SVT, IC03, IC13, IC15, SVTP, CUTE数据集上进行评估,算法效果如下:
模型 | 骨干网络 | Avg Accuracy | 配置文件 | 下载链接 |
---|---|---|---|---|
SEED | Aster_Resnet | 85.20% | configs/rec/rec_resnet_stn_bilstm_att.yml | 训练模型 |
2. 环境配置¶
请先参考《运行环境准备》配置PaddleOCR运行环境,参考《项目克隆》克隆项目代码。
3. 模型训练、评估、预测¶
请参考文本识别训练教程。PaddleOCR对代码进行了模块化,训练不同的识别模型只需要更换配置文件即可。
训练¶
SEED模型需要额外加载FastText训练好的语言模型 ,并且安装 fasttext 依赖:
然后,在完成数据准备后,便可以启动训练,训练命令如下:
评估¶
预测¶
4. 推理部署¶
4.1 Python推理¶
coming soon
4.2 C++推理¶
coming soon
4.3 Serving服务化部署¶
coming soon
4.4 更多推理部署¶
coming soon
5. FAQ¶
引用¶
@inproceedings{qiao2020seed,
title={Seed: Semantics enhanced encoder-decoder framework for scene text recognition},
author={Qiao, Zhi and Zhou, Yu and Yang, Dongbao and Zhou, Yucan and Wang, Weiping},
booktitle={Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition},
pages={13528--13537},
year={2020}
}