Skip to content

Seal Text Recognition Pipeline Usage Tutorial

1. Overview

Table structure recognition is an important component of table recognition systems, capable of converting non-editable table images into editable table formats (such as HTML). The goal of table structure recognition is to identify the positions of rows, columns, and cells in tables. The performance of this module directly affects the accuracy and efficiency of the entire table recognition system. The table structure recognition module usually outputs HTML code for the table area, which is then passed as input to the tabl recognition pipeline for further processing.

2. Supported Model List

ModelModel Download Link Accuracy (%) GPU Inference Time (ms)
[Normal Mode / High Performance Mode]
CPU Inference Time (ms)
[Normal Mode / High Performance Mode]
Model Storage Size (M) Description
SLANetInference Model/Training Model 59.52 103.08 / 103.08 197.99 / 197.99 6.9 M SLANet is a table structure recognition model independently developed by Baidu PaddlePaddle Vision Team. By adopting a CPU-friendly lightweight backbone network PP-LCNet, high-low level feature fusion module CSP-PAN, and SLA Head, a feature decoding module aligning structure and position information, this model greatly improves the accuracy and inference speed of table structure recognition.
SLANet_plusInference Model/Training Model 63.69 140.29 / 140.29 195.39 / 195.39 6.9 M SLANet_plus is an enhanced version of the table structure recognition model SLANet independently developed by the Baidu PaddlePaddle Vision Team. Compared to SLANet, SLANet_plus has greatly improved the recognition ability for wireless and complex tables, and reduced the model's sensitivity to table positioning accuracy. Even if the table positioning is offset, it can still be accurately recognized.
SLANeXt_wired Inference Model/Training Model 69.65 -- -- 351M The SLANeXt series is a new generation of table structure recognition models independently developed by the Baidu PaddlePaddle Vision Team. Compared to SLANet and SLANet_plus, SLANeXt focuses on table structure recognition, and trains dedicated weights for wired and wireless tables separately. The recognition ability for all types of tables has been significantly improved, especially for wired tables.
SLANeXt_wireless Inference Model/Training Model

Test Environment Description:

  • Performance Test Environment
    • Test Dataset: High-difficulty Chinese table recognition dataset.
    • Hardware Configuration:
      • GPU: NVIDIA Tesla T4
      • CPU: Intel Xeon Gold 6271C @ 2.60GHz
      • Other Environment: Ubuntu 20.04 / cuDNN 8.6 / TensorRT 8.5.2.2
  • Inference Mode Description
Mode GPU Configuration CPU Configuration Acceleration Technology Combination
Normal Mode FP32 precision / No TRT acceleration FP32 precision / 8 threads PaddleInference
High Performance Mode Optimal combination of prior precision type and acceleration strategy FP32 precision / 8 threads Selects the prior optimal backend (Paddle/OpenVINO/TRT, etc.)

3. Quick Start

❗ Before getting started, please install the PaddleOCR wheel package. For details, please refer to the Installation Tutorial.

Quickly experience with a single command:

paddleocr table_structure_recognition -i https://paddle-model-ecology.bj.bcebos.com/paddlex/imgs/demo_image/table_recognition.jpg
The command line supports more parameter settings. Click to expand for detailed explanations of command line parameters.
Parameter Description Parameter Type Default Value
input Data to be predicted, required. Local path of image or PDF file, e.g., /root/data/img.jpg; URL link, e.g., network URL of image or PDF file: Example; Local directory, the directory should contain images to be predicted, e.g., local path: /root/data/ (currently does not support prediction of PDF files in directories; PDF files must be specified with a specific file path). str
save_path Specify the path to save the inference results file. If not set, the inference results will not be saved locally. str
doc_orientation_classify_model_name The name of the document orientation classification model. If not set, the default model in pipeline will be used. str
doc_orientation_classify_model_dir The directory path of the document orientation classification model. If not set, the official model will be downloaded. str
doc_unwarping_model_name The name of the text image unwarping model. If not set, the default model in pipeline will be used. str
doc_unwarping_model_dir The directory path of the text image unwarping model. If not set, the official model will be downloaded. str
layout_detection_model_name The name of the layout detection model. If not set, the default model in pipeline will be used. str
layout_detection_model_dir The directory path of the layout detection model. If not set, the official model will be downloaded. str
seal_text_detection_model_name The name of the seal text detection model. If not set, the pipeline's default model will be used. str
seal_text_detection_model_dir The directory path of the seal text detection model. If not set, the official model will be downloaded. str
text_recognition_model_name Name of the text recognition model. If not set, the default pipeline model is used. str
text_recognition_model_dir Directory path of the text recognition model. If not set, the official model is downloaded. str
text_recognition_batch_size Batch size for the text recognition model. If not set, defaults to 1. int
use_doc_orientation_classify Whether to load and use document orientation classification module. If not set, defaults to pipeline initialization value (True). bool
use_doc_unwarping Whether to load and use text image correction module. If not set, defaults to pipeline initialization value (True). bool
use_layout_detection Whether to load and use the layout detection module. If not set, the parameter will default to the value initialized in the pipeline, which is True. bool
layout_threshold Score threshold for the layout model. Any value between 0-1. If not set, the default value is used, which is 0.5. float
layout_nms Whether to use Non-Maximum Suppression (NMS) as post-processing for layout detection. If not set, the parameter will default to the value initialized in the pipeline, which is set to True by default. bool
layout_unclip_ratio Unclip ratio for detected boxes in layout detection model. Any float > 0. If not set, the default is 1.0. float
layout_merge_bboxes_mode The merging mode for the detection boxes output by the model in layout region detection.
  • large: When set to "large", only the largest outer bounding box will be retained for overlapping bounding boxes, and the inner overlapping boxes will be removed;
  • small: When set to "small", only the smallest inner bounding boxes will be retained for overlapping bounding boxes, and the outer overlapping boxes will be removed;
  • union: No filtering of bounding boxes will be performed, and both inner and outer boxes will be retained;
If not set, the default is large.
str
seal_det_limit_side_len Image side length limit for seal text detection. Any integer > 0. If not set, the default is 736. int
seal_det_limit_type Limit type for image side in seal text detection. Supports min and max; min ensures shortest side ≥ det_limit_side_len, max ensures longest side ≤ limit_side_len. If not set, the default is min. str
seal_det_thresh Pixel threshold. Pixels with scores above this value in the probability map are considered text. any float > 0. If not set, the default is 0.2. float
seal_det_box_thresh Box threshold. Boxes with average pixel scores above this value are considered text regions. any float > 0. If not set, the default is 0.6. float
seal_det_unclip_ratio Expansion ratio for seal text detection. Higher value means larger expansion area. Any float > 0. If not set, the default is 0.5. float
seal_rec_score_thresh Recognition score threshold. Text results above this value will be kept. Any float > 0. If not set, the default is 0.0 (no threshold). float
device The device used for inference. Support for specifying specific card numbers:
  • CPU: For example, cpu indicates using the CPU for inference.
  • GPU: For example, gpu:0 indicates using the first GPU for inference.
  • NPU: For example, npu:0 indicates using the first NPU for inference.
  • XPU: For example, xpu:0 indicates using the first XPU for inference.
  • MLU: For example, mlu:0 indicates using the first MLU for inference.
  • DCU: For example, dcu:0 indicates using the first DCU for inference.
If not set, the pipeline initialized value for this parameter will be used. During initialization, the local GPU device 0 will be preferred; if unavailable, the CPU device will be used.
str
enable_hpi Whether to enable high-performance inference. bool False
use_tensorrt Whether to use the Paddle Inference TensorRT subgraph engine.
For Paddle with CUDA version 11.8, the compatible TensorRT version is 8.x (x>=6), and it is recommended to install TensorRT 8.6.1.6.
For Paddle with CUDA version 12.6, the compatible TensorRT version is 10.x (x>=5), and it is recommended to install TensorRT 10.5.0.18.
bool False
precision The computational precision, such as fp32, fp16. str fp32
enable_mkldnn Whether to enable MKL-DNN acceleration for inference. If MKL-DNN is unavailable or the model does not support it, acceleration will not be used even if this flag is set. bool True
mkldnn_cache_capacity MKL-DNN cache capacity. int 10
cpu_threads The number of threads used for inference on the CPU. int 8
paddlex_config Path to PaddleX pipeline configuration file. str


After running, the results will be printed to the terminal, as follows:

{'res': {'input_path': './seal_text_det.png', 'model_settings': {'use_doc_preprocessor': True, 'use_layout_detection': True}, 'doc_preprocessor_res': {'input_path': None, 'page_index': None, 'model_settings': {'use_doc_orientation_classify': False, 'use_doc_unwarping': False}, 'angle': -1}, 'layout_det_res': {'input_path': None, 'page_index': None, 'boxes': [{'cls_id': 16, 'label': 'seal', 'score': 0.975529670715332, 'coordinate': [6.191284, 0.16680908, 634.39325, 628.85345]}]}, 'seal_res_list': [{'input_path': None, 'page_index': None, 'model_settings': {'use_doc_preprocessor': False, 'use_textline_orientation': False}, 'dt_polys': [array([[320,  38],
       ...,
       [315,  38]]), array([[461, 347],
       ...,
       [456, 346]]), array([[439, 445],
       ...,
       [434, 444]]), array([[158, 468],
       ...,
       [154, 466]])], 'text_det_params': {'limit_side_len': 736, 'limit_type': 'min', 'thresh': 0.2, 'max_side_limit': 4000, 'box_thresh': 0.6, 'unclip_ratio': 0.5}, 'text_type': 'seal', 'textline_orientation_angles': array([-1, ..., -1]), 'text_rec_score_thresh': 0, 'rec_texts': ['天津君和缘商贸有限公司', '发票专用章', '吗繁物', '5263647368706'], 'rec_scores': array([0.99340463, ..., 0.9916274 ]), 'rec_polys': [array([[320,  38],
       ...,
       [315,  38]]), array([[461, 347],
       ...,
       [456, 346]]), array([[439, 445],
       ...,
       [434, 444]]), array([[158, 468],
       ...,
       [154, 466]])], 'rec_boxes': array([], dtype=float64)}]}}
The visualized results are saved under save_path, and the visualized result of seal OCR is as follows:

2.2 Python Script Integration

  • The above command line is for quickly experiencing and viewing the effect. Generally, in a project, you often need to integrate through code. You can complete the quick inference of the pipeline with just a few lines of code. The inference code is as follows:
from paddleocr import TableStructureRecognition
model = TableStructureRecognition(model_name="SLANet")
output = model.predict(input="table_recognition.jpg", batch_size=1)
for res in output:
    res.print(json_format=False)
    res.save_to_json("./output/res.json")

After running, the result is:

{'res': {'input_path': 'table_recognition.jpg', 'page_index': None, 'bbox': [[42, 2, 390, 2, 388, 27, 40, 26], [11, 35, 89, 35, 87, 63, 11, 63], [113, 34, 192, 34, 186, 64, 109, 64], [219, 33, 399, 33, 393, 62, 212, 62], [413, 33, 544, 33, 544, 64, 407, 64], [12, 67, 98, 68, 96, 93, 12, 93], [115, 66, 205, 66, 200, 91, 111, 91], [234, 65, 390, 65, 385, 92, 227, 92], [414, 66, 537, 67, 537, 95, 409, 95], [7, 97, 106, 97, 104, 128, 7, 128], [113, 96, 206, 95, 201, 127, 109, 127], [236, 96, 386, 96, 381, 128, 230, 128], [413, 96, 534, 95, 533, 127, 408, 127]], 'structure': ['<html>', '<body>', '<table>', '<tr>', '<td', ' colspan="4"', '>', '</td>', '</tr>', '<tr>', '<td></td>', '<td></td>', '<td></td>', '<td></td>', '</tr>', '<tr>', '<td></td>', '<td></td>', '<td></td>', '<td></td>', '</tr>', '<tr>', '<td></td>', '<td></td>', '<td></td>', '<td></td>', '</tr>', '</table>', '</body>', '</html>'], 'structure_score': 0.99948007}}
(1) Instantiate a pipeline object for seal text recognition using the SealRecognition() class, with specific parameter descriptions as follows:

Parameter meanings are as follows:

  • input_path: The path of the input table image to be predicted
  • page_index: If the input is a PDF file, indicates the page number of the PDF; otherwise, it is None
  • boxes: Predicted table cell information, a list consisting of the coordinates of predicted table cells. Notably, table cell predictions for the SLANeXt series models are invalid
  • structure: Predicted table structure HTML expressions, a list consisting of predicted HTML keywords in order
  • structure_score: Confidence of the predicted table structure

Descriptions of related methods and parameters are as follows:

  • TableStructureRecognition instantiates a table structure recognition model (using SLANet as an example). Details are as follows:
Parameter Description Type Options Default
doc_orientation_classify_model_name Name of the document orientation classification model. If set to None, the pipeline default model is used. str All model names None
doc_orientation_classify_model_dir Directory path of the document orientation classification model. If set to None, the official model will be downloaded. str None
doc_unwarping_model_name Name of the document unwarping model. If set to None, the pipeline default model is used. str None
doc_unwarping_model_dir Directory path of the document unwarping model. If set to None, the official model will be downloaded. str None
layout_detection_model_name Name of the layout detection model. If set to None, the pipeline default model is used. str None
layout_detection_model_dir Directory path of the layout detection model. If set to None, the official model will be downloaded. str None
seal_text_detection_model_name Name of the seal text detection model. If set to None, the default model will be used. str
seal_text_detection_model_dir Directory of the seal text detection model. If set to None, the official model will be downloaded. str
text_recognition_model_name Name of the text recognition model. If set to None, the pipeline default model is used. str None
text_recognition_model_dir Directory path of the text recognition model. If set to None, the official model will be downloaded. str None
text_recognition_batch_size Batch size for the text recognition model. If set to None, the default batch size is 1. int None
use_doc_orientation_classify Whether to enable the document orientation classification module. If set to None, the default value is True. bool None
use_doc_unwarping Whether to enable the document image unwarping module. If set to None, the default value is True. bool None
use_layout_detection Whether to load and use the layout detection module. If set to None, the parameter will default to the value initialized in the pipeline, which is True. bool None
layout_threshold Score threshold for the layout model.
  • float: Any float between 0-1;
  • dict: {0:0.1} where the key is the class ID and the value is the threshold for that class;
  • None: If set to None, uses the pipeline default of 0.5.
float|dict None
layout_nms Whether to use Non-Maximum Suppression (NMS) as post-processing for layout detection. If set to None, the parameter will default to the value initialized in the pipeline, which is set to True by default. bool None
layout_unclip_ratio Expansion ratio for the bounding boxes from the layout detection model.
  • float: Any float greater than 0;
  • Tuple[float,float]: Expansion ratios in horizontal and vertical directions;
  • dict: A dictionary with int keys representing cls_id, and tuple values, e.g., {0: (1.1, 2.0)} means width is expanded 1.1× and height 2.0× for class 0 boxes;
  • None: If set to None, uses the pipeline default of 1.0.
float|Tuple[float,float]|dict None
layout_merge_bboxes_mode Filtering method for overlapping boxes in layout detection.
  • str: Options include large, small, and union to retain the larger box, smaller box, or both;
  • dict: A dictionary with int keys representing cls_id, and str values, e.g., {0: "large", 2: "small"} means using different modes for different classes;
  • None: If set to None, uses the pipeline default value large.
str|dict None
seal_det_limit_side_len Image side length limit for seal text detection.
  • int: Any integer greater than 0;
  • None: If set to None, the default value is 736.
int None
seal_det_limit_type Limit type for seal text detection image side length.
  • str: Supports min and max. min ensures the shortest side is no less than det_limit_side_len, while max ensures the longest side is no greater than limit_side_len;
  • None: If set to None, the default value is min.
str None
seal_det_thresh Pixel threshold for detection. Pixels with scores greater than this value in the probability map are considered text pixels.
  • float: Any float greater than 0;
  • None: If set to None, the default value is 0.2.
float None
seal_det_box_thresh Bounding box threshold. If the average score of all pixels inside a detection box exceeds this threshold, it is considered a text region.
  • float: Any float greater than 0;
  • None: If set to None, the default value is 0.6.
float None
seal_det_unclip_ratio Expansion ratio for seal text detection. The larger the value, the larger the expanded area.
  • float: Any float greater than 0;
  • None: If set to None, the default value is 0.5.
float None
seal_rec_score_thresh Score threshold for seal text recognition. Text results with scores above this threshold will be retained.
  • float: Any float greater than 0;
  • None: If set to None, the default value is 0.0 (no threshold).
float None
device Device used for inference. Supports specifying device ID:
  • CPU: e.g., cpu means using CPU for inference;
  • GPU: e.g., gpu:0 means using GPU 0;
  • NPU: e.g., npu:0 means using NPU 0;
  • XPU: e.g., xpu:0 means using XPU 0;
  • MLU: e.g., mlu:0 means using MLU 0;
  • DCU: e.g., dcu:0 means using DCU 0;
  • None: If set to None, the pipeline initialized value for this parameter will be used. During initialization, the local GPU device 0 will be preferred; if unavailable, the CPU device will be used.
str None
enable_hpi Whether to enable high-performance inference. bool False
use_tensorrt Whether to use the Paddle Inference TensorRT subgraph engine.
For Paddle with CUDA version 11.8, the compatible TensorRT version is 8.x (x>=6), and it is recommended to install TensorRT 8.6.1.6.
For Paddle with CUDA version 12.6, the compatible TensorRT version is 10.x (x>=5), and it is recommended to install TensorRT 10.5.0.18.
bool False
precision Computation precision, e.g., fp32, fp16. str "fp32"
enable_mkldnn Whether to enable MKL-DNN acceleration for inference. If MKL-DNN is unavailable or the model does not support it, acceleration will not be used even if this flag is set. bool True
mkldnn_cache_capacity MKL-DNN cache capacity. int 10
cpu_threads Number of threads used for inference on CPU. int 8
paddlex_config Path to the PaddleX pipeline configuration file. str None
  • Among them, model_name must be specified. If model_dir is specified, the user's custom model is used.

  • Call the predict() method of the table structure recognition model for inference prediction, which returns a result list. In addition, this module also provides the predict_iter() method. The two are completely consistent in parameter acceptance and result return. The difference is that predict_iter() returns a generator, which can process and obtain prediction results step by step, suitable for handling large datasets or scenarios where you want to save memory. You can choose to use either method according to your actual needs. The predict() method has parameters input and batch_size, described as follows:

Parameter Parameter Description Parameter Type Default Value
input Input data to be predicted. Required. Supports multiple types:
  • Python Var: Image data represented by numpy.ndarray;
  • str: Local path of an image or PDF file, e.g., /root/data/img.jpg; URL link, e.g., the network URL of an image or PDF file: Example; Local directory, containing images to be predicted, e.g., /root/data/ (currently does not support prediction of PDF files in directories; PDF files must be specified with an exact file path);
  • List: Elements of the list must be of the above types, e.g., [numpy.ndarray, numpy.ndarray], [\"/root/data/img1.jpg\", \"/root/data/img2.jpg\"], [\"/root/data1\", \"/root/data2\"].
Python Var|str|list
use_doc_orientation_classify Whether to use the document orientation classification module during inference. bool None
use_doc_unwarping Whether to use the text image correction module during inference. bool None
use_layout_detection Whether to use the layout detection module during inference. bool None
layout_threshold Same as the parameter during instantiation. float|dict None
layout_nms Same as the parameter during instantiation. bool None
layout_unclip_ratio Same as the parameter during instantiation. float|Tuple[float,float]|dict None
layout_merge_bboxes_mode Same as the parameter during instantiation. str|dict None
seal_det_limit_side_len Same as the parameter during instantiation. int None
seal_det_limit_type Same as the parameter during instantiation. str None
seal_det_thresh Same as the parameter during instantiation. float None
seal_det_box_thresh Same as the parameter during instantiation. float None
seal_det_unclip_ratio Same as the parameter during instantiation. float None
seal_rec_score_thresh Same as the parameter during instantiation. float None
  • For processing prediction results, the prediction result of each sample is the corresponding Result object, and supports printing and saving as a json file:
Method Description Parameter Type Parameter Description Default
print() Print result to terminal format_json bool Whether to format the output content using JSON indentation. True
indent int Specify the indentation level to beautify the output JSON data for better readability, effective only when format_json is True. 4
ensure_ascii bool Control whether to escape non-ASCII characters to Unicode. When set to True, all non-ASCII characters will be escaped; False will retain the original characters, effective only when format_json is True. False
save_to_json() Save result as json format file save_path str The file path to save the results. When it is a directory, the saved file name will be consistent with the input file type. None
indent int Specify the indentation level to beautify the output JSON data for better readability, effective only when format_json is True. 4
ensure_ascii bool Control whether to escape non-ASCII characters to Unicode. When set to True, all non-ASCII characters will be escaped; False will retain the original characters, effective only when format_json is True. False
save_to_img() Save results as an image file save_path str The file path to save the results, supports directory or file path. None
  • In addition, it also supports obtaining results through attributes, as follows:
Attribute Description
json Get the prediction result in json format
  • The prediction results obtained through the json attribute are of dict type, with content consistent with what is saved by calling the save_to_json() method.
  • The prediction results returned by the img attribute are of dict type. The keys are layout_det_res, seal_res_region1, and preprocessed_img, corresponding to three Image.Image objects: one for visualizing layout detection, one for visualizing seal text recognition results, and one for visualizing image preprocessing. If the image preprocessing sub-module is not used, preprocessed_img will not be included in the dictionary. If the layout region detection module is not used, layout_det_res will not be included.

3. Development Integration/Deployment

If the pipeline meets your requirements for inference speed and accuracy, you can proceed directly with development integration/deployment.

If you need to integrate the pipeline into your Python project, you can refer to the example code in 2.2 Python Script Method.

In addition, PaddleOCR also provides three other deployment methods, which are detailed as follows:

🚀 High-Performance Inference: In real-world production environments, many applications have stringent performance requirements for deployment strategies, especially in terms of response speed, to ensure efficient system operation and a smooth user experience. To address this, PaddleOCR offers high-performance inference capabilities aimed at deeply optimizing the performance of model inference and pre/post-processing, thereby significantly accelerating the end-to-end process. For detailed high-performance inference procedures, please refer to High-Performance Inference.

☁️ Service Deployment: Service deployment is a common form of deployment in real-world production environments. By encapsulating inference functionality into a service, clients can access these services via network requests to obtain inference results. For detailed production service deployment procedures, please refer to Serving.

Below are the API references for basic serving deployment and multi-language service invocation examples:

API Reference

For the main operations provided by the service:

  • The HTTP request method is POST.
  • The request body and response body are both JSON data (JSON objects).
  • When the request is processed successfully, the response status code is 200, and the attributes of the response body are as follows:
Name Type Description
logId string The UUID of the request.
errorCode integer Error code. Fixed as 0.
errorMsg string Error message. Fixed as "Success".
result object The result of the operation.
  • When the request is not processed successfully, the attributes of the response body are as follows:
Name Type Description
logId string The UUID of the request.
errorCode integer Error code. Same as the response status code.
errorMsg string Error message.

The main operations provided by the service are as follows:

  • infer

Obtain the seal text recognition result.

POST /seal-recognition

  • The attributes of the request body are as follows:
Name Type Description Required
file string The URL of an image or PDF file accessible by the server, or the Base64-encoded content of the file. By default, for PDF files exceeding 10 pages, only the content of the first 10 pages will be processed.
To remove the page limit, please add the following configuration to the pipeline configuration file:
Serving:
  extra:
    max_num_input_imgs: null
Yes
fileType integer | null The type of file. 0 indicates a PDF file, 1 indicates an image file. If this attribute is not present in the request body, the file type will be inferred from the URL. No
useDocOrientationClassify boolean | null Please refer to the description of the use_doc_orientation_classify parameter of the pipeline object's predict method. No
useDocUnwarping boolean | null Please refer to the description of the use_doc_unwarping parameter of the pipeline object's predict method. No
useLayoutDetection boolean | null Please refer to the description of the use_layout_detection parameter of the pipeline object's predict method. No
layoutThreshold number | null Please refer to the description of the layout_threshold parameter of the pipeline object's predict method. No
layoutNms boolean | null Please refer to the description of the layout_nms parameter of the pipeline object's predict method. No
layoutUnclipRatio number | array | null Please refer to the description of the layout_unclip_ratio parameter of the pipeline object's predict method. No
layoutMergeBboxesMode string | null Please refer to the description of the layout_merge_bboxes_mode parameter of the pipeline object's predict method. No
sealDetLimitSideLen integer | null Please refer to the description of the seal_det_limit_side_len parameter of the pipeline object's predict method. No
sealDetLimitType string | null Please refer to the description of the seal_det_limit_type parameter of the pipeline object's predict method. No
sealDetThresh number | null Please refer to the description of the seal_det_thresh parameter of the pipeline object's predict method. No
sealDetBoxThresh number | null Please refer to the description of the seal_det_box_thresh parameter of the pipeline object's predict method. No
sealDetUnclipRatio number | null Please refer to the description of the seal_det_unclip_ratio parameter of the pipeline object's predict method. No
sealRecScoreThresh number | null Please refer to the description of the seal_rec_score_thresh parameter of the pipeline object's predict method. No
  • When the request is processed successfully, the result in the response body has the following properties:
Name Type Meaning
sealRecResults object The seal text recognition result. The array length is 1 (for image input) or the actual number of document pages processed (for PDF input). For PDF input, each element in the array represents the result of each page actually processed in the PDF file.
dataInfo object Information about the input data.

Each element in sealRecResults is an object with the following properties:

Name Type Meaning
prunedResult object A simplified version of the res field in the JSON representation generated by the predict method of the production object, where the input_path and the page_index fields are removed.
outputImages object | null See the description of the img attribute of the result of the pipeline prediction. The images are in JPEG format and encoded in Base64.
inputImage string | null The input image. The image is in JPEG format and encoded in Base64.
Multi-language Service Invocation Example
Python
import base64
import requests

API_URL = "http://localhost:8080/seal-recognition"
file_path = "./demo.jpg"

with open(file_path, "rb") as file:
    file_bytes = file.read()
    file_data = base64.b64encode(file_bytes).decode("ascii")

payload = {"file": file_data, "fileType": 1}

response = requests.post(API_URL, json=payload)

assert response.status_code == 200
result = response.json()["result"]
for i, res in enumerate(result["sealRecResults"]):
    print(res["prunedResult"])
    for img_name, img in res["outputImages"].items():
        img_path = f"{img_name}_{i}.jpg"
        with open(img_path, "wb") as f:
            f.write(base64.b64decode(img))
        print(f"Output image saved at {img_path}")
C++
#include <iostream>
#include <fstream>
#include <vector>
#include <string>
#include "cpp-httplib/httplib.h" // https://github.com/Huiyicc/cpp-httplib
#include "nlohmann/json.hpp" // https://github.com/nlohmann/json
#include "base64.hpp" // https://github.com/tobiaslocker/base64

int main() {
    httplib::Client client("localhost", 8080);

    const std::string filePath = "./demo.jpg";

    std::ifstream file(filePath, std::ios::binary | std::ios::ate);
    if (!file) {
        std::cerr << "Error opening file: " << filePath << std::endl;
        return 1;
    }

    std::streamsize size = file.tellg();
    file.seekg(0, std::ios::beg);
    std::vector buffer(size);
    if (!file.read(buffer.data(), size)) {
        std::cerr << "Error reading file." << std::endl;
        return 1;
    }

    std::string bufferStr(buffer.data(), static_cast(size));
    std::string encodedFile = base64::to_base64(bufferStr);

    nlohmann::json jsonObj;
    jsonObj["file"] = encodedFile;
    jsonObj["fileType"] = 1;

    auto response = client.Post("/seal-recognition", jsonObj.dump(), "application/json");

    if (response && response->status == 200) {
        nlohmann::json jsonResponse = nlohmann::json::parse(response->body);
        auto result = jsonResponse["result"];

        if (!result.is_object() || !result["sealRecResults"].is_array()) {
            std::cerr << "Unexpected response format." << std::endl;
            return 1;
        }

        for (size_t i = 0; i < result["sealRecResults"].size(); ++i) {
            auto res = result["sealRecResults"][i];

            if (res.contains("prunedResult")) {
                std::cout << "Recognized seal result: " << res["prunedResult"].dump() << std::endl;
            }

            if (res.contains("outputImages") && res["outputImages"].is_object()) {
                for (auto& [imgName, imgData] : res["outputImages"].items()) {
                    std::string outputPath = imgName + "_" + std::to_string(i) + ".jpg";
                    std::string decodedImage = base64::from_base64(imgData.get());

                    std::ofstream outFile(outputPath, std::ios::binary);
                    if (outFile.is_open()) {
                        outFile.write(decodedImage.c_str(), decodedImage.size());
                        outFile.close();
                        std::cout << "Saved image: " << outputPath << std::endl;
                    } else {
                        std::cerr << "Failed to write image: " << outputPath << std::endl;
                    }
                }
            }
        }
    } else {
        std::cerr << "Request failed." << std::endl;
        if (response) {
            std::cerr << "HTTP status: " << response->status << std::endl;
            std::cerr << "Response body: " << response->body << std::endl;
        }
        return 1;
    }

    return 0;
}
Java
import okhttp3.*;
import com.fasterxml.jackson.databind.ObjectMapper;
import com.fasterxml.jackson.databind.JsonNode;
import com.fasterxml.jackson.databind.node.ObjectNode;

import java.io.File;
import java.io.FileOutputStream;
import java.io.IOException;
import java.util.Base64;

public class Main {
    public static void main(String[] args) throws IOException {
        String API_URL = "http://localhost:8080/seal-recognition";
        String imagePath = "./demo.jpg";

        File file = new File(imagePath);
        byte[] fileContent = java.nio.file.Files.readAllBytes(file.toPath());
        String base64Image = Base64.getEncoder().encodeToString(fileContent);

        ObjectMapper objectMapper = new ObjectMapper();
        ObjectNode payload = objectMapper.createObjectNode();
        payload.put("file", base64Image);
        payload.put("fileType", 1);

        OkHttpClient client = new OkHttpClient();
        MediaType JSON = MediaType.get("application/json; charset=utf-8");
        RequestBody body = RequestBody.create(JSON, payload.toString());

        Request request = new Request.Builder()
                .url(API_URL)
                .post(body)
                .build();

        try (Response response = client.newCall(request).execute()) {
            if (response.isSuccessful()) {
                String responseBody = response.body().string();
                JsonNode root = objectMapper.readTree(responseBody);
                JsonNode result = root.get("result");

                JsonNode sealRecResults = result.get("sealRecResults");
                for (int i = 0; i < sealRecResults.size(); i++) {
                    JsonNode item = sealRecResults.get(i);
                    int finalI = i;

                    JsonNode prunedResult = item.get("prunedResult");
                    System.out.println("Pruned Result [" + i + "]: " + prunedResult.toString());

                    JsonNode outputImages = item.get("outputImages");
                    if (outputImages != null && outputImages.isObject()) {
                        outputImages.fieldNames().forEachRemaining(imgName -> {
                            try {
                                String imgBase64 = outputImages.get(imgName).asText();
                                byte[] imgBytes = Base64.getDecoder().decode(imgBase64);
                                String imgPath = imgName + "_" + finalI + ".jpg";
                                try (FileOutputStream fos = new FileOutputStream(imgPath)) {
                                    fos.write(imgBytes);
                                    System.out.println("Saved image: " + imgPath);
                                }
                            } catch (IOException e) {
                                System.err.println("Failed to save image: " + e.getMessage());
                            }
                        });
                    }
                }
            } else {
                System.err.println("Request failed with HTTP code: " + response.code());
            }
        }
    }
}
Go
package main

import (
    "bytes"
    "encoding/base64"
    "encoding/json"
    "fmt"
    "io/ioutil"
    "net/http"
)

func main() {
    API_URL := "http://localhost:8080/seal-recognition"
    filePath := "./demo.jpg"

    fileBytes, err := ioutil.ReadFile(filePath)
    if err != nil {
        fmt.Printf("Error reading file: %v\n", err)
        return
    }
    fileData := base64.StdEncoding.EncodeToString(fileBytes)

    payload := map[string]interface{}{
        "file":     fileData,
        "fileType": 1,
    }
    payloadBytes, err := json.Marshal(payload)
    if err != nil {
        fmt.Printf("Error marshaling payload: %v\n", err)
        return
    }

    client := &http.Client{}
    req, err := http.NewRequest("POST", API_URL, bytes.NewBuffer(payloadBytes))
    if err != nil {
        fmt.Printf("Error creating request: %v\n", err)
        return
    }
    req.Header.Set("Content-Type", "application/json")

    resp, err := client.Do(req)
    if err != nil {
        fmt.Printf("Error sending request: %v\n", err)
        return
    }
    defer resp.Body.Close()

    if resp.StatusCode != http.StatusOK {
        fmt.Printf("Unexpected status code: %d\n", resp.StatusCode)
        return
    }

    body, err := ioutil.ReadAll(resp.Body)
    if err != nil {
        fmt.Printf("Error reading response body: %v\n", err)
        return
    }

    type SealResult struct {
        PrunedResult map[string]interface{}   `json:"prunedResult"`
        OutputImages map[string]string        `json:"outputImages"`
        InputImage   *string                  `json:"inputImage"`
    }

    type Response struct {
        Result struct {
            SealRecResults []SealResult  `json:"sealRecResults"`
            DataInfo       interface{}   `json:"dataInfo"`
        } `json:"result"`
    }

    var respData Response
    if err := json.Unmarshal(body, &respData); err != nil {
        fmt.Printf("Error unmarshaling response: %v\n", err)
        return
    }

    for i, res := range respData.Result.SealRecResults {
        fmt.Printf("Pruned Result %d: %+v\n", i, res.PrunedResult)

        for name, imgBase64 := range res.OutputImages {
            imgBytes, err := base64.StdEncoding.DecodeString(imgBase64)
            if err != nil {
                fmt.Printf("Error decoding image %s: %v\n", name, err)
                continue
            }

            filename := fmt.Sprintf("%s_%d.jpg", name, i)
            if err := ioutil.WriteFile(filename, imgBytes, 0644); err != nil {
                fmt.Printf("Error saving image %s: %v\n", filename, err)
                continue
            }
            fmt.Printf("Output image saved at %s\n", filename)
        }
    }
}
C#
using System;
using System.IO;
using System.Net.Http;
using System.Text;
using System.Threading.Tasks;
using Newtonsoft.Json.Linq;

class Program
{
    static readonly string API_URL = "http://localhost:8080/seal-recognition";
    static readonly string inputFilePath = "./demo.jpg";

    static async Task Main(string[] args)
    {
        var httpClient = new HttpClient();

        byte[] fileBytes = File.ReadAllBytes(inputFilePath);
        string fileData = Convert.ToBase64String(fileBytes);

        var payload = new JObject
        {
            { "file", fileData },
            { "fileType", 1 }
        };
        var content = new StringContent(payload.ToString(), Encoding.UTF8, "application/json");

        HttpResponseMessage response = await httpClient.PostAsync(API_URL, content);
        response.EnsureSuccessStatusCode();

        string responseBody = await response.Content.ReadAsStringAsync();
        JObject jsonResponse = JObject.Parse(responseBody);

        JArray sealRecResults = (JArray)jsonResponse["result"]["sealRecResults"];
        for (int i = 0; i < sealRecResults.Count; i++)
        {
            var res = sealRecResults[i];
            Console.WriteLine($"[{i}] prunedResult:\n{res["prunedResult"]}");

            JObject outputImages = res["outputImages"] as JObject;
            if (outputImages != null)
            {
                foreach (var img in outputImages)
                {
                    string imgName = img.Key;
                    string base64Img = img.Value?.ToString();
                    if (!string.IsNullOrEmpty(base64Img))
                    {
                        string imgPath = $"{imgName}_{i}.jpg";
                        byte[] imageBytes = Convert.FromBase64String(base64Img);
                        File.WriteAllBytes(imgPath, imageBytes);
                        Console.WriteLine($"Output image saved at {imgPath}");
                    }
                }
            }
        }
    }
}
Node.js
const axios = require('axios');
const fs = require('fs');
const path = require('path');

const API_URL = 'http://localhost:8080/seal-recognition';
const imagePath = './demo.jpg';

function encodeImageToBase64(filePath) {
  const bitmap = fs.readFileSync(filePath);
  return Buffer.from(bitmap).toString('base64');
}

const payload = {
  file: encodeImageToBase64(imagePath),
  fileType: 1
};

axios.post(API_URL, payload)
  .then((response) => {
    const result = response.data["result"];
    const sealRecResults = result["sealRecResults"];

    sealRecResults.forEach((res, i) => {
      console.log(`\n[${i}] prunedResult:\n`, res["prunedResult"]);

      const outputImages = res["outputImages"];
      if (outputImages) {
        for (const [imgName, base64Img] of Object.entries(outputImages)) {
          const imgBuffer = Buffer.from(base64Img, 'base64');
          const fileName = `${imgName}_${i}.jpg`;
          fs.writeFileSync(fileName, imgBuffer);
          console.log(`Output image saved at ${fileName}`);
        }
      } else {
        console.log(`[${i}] No outputImages found.`);
      }
    });
  })
  .catch((error) => {
    console.error('Error occurred while calling the API:', error.message);
  });
PHP
<?php

$API_URL = "http://localhost:8080/seal-recognition";
$image_path = "./demo.jpg";

$image_data = base64_encode(file_get_contents($image_path));
$payload = array("file" => $image_data, "fileType" => 1);

$ch = curl_init($API_URL);
curl_setopt($ch, CURLOPT_POST, true);
curl_setopt($ch, CURLOPT_POSTFIELDS, json_encode($payload));
curl_setopt($ch, CURLOPT_HTTPHEADER, array('Content-Type: application/json'));
curl_setopt($ch, CURLOPT_RETURNTRANSFER, true);
$response = curl_exec($ch);
curl_close($ch);

$result = json_decode($response, true)["result"]["sealRecResults"];

foreach ($result as $i => $item) {
    echo "[$i] prunedResult:\n";
    print_r($item["prunedResult"]);

    if (!empty($item["outputImages"])) {
        foreach ($item["outputImages"] as $img_name => $base64_img) {
            if (!empty($base64_img)) {
                $output_path = "{$img_name}_{$i}.jpg";
                file_put_contents($output_path, base64_decode($base64_img));
                echo "Output image saved at $output_path\n";
            }
        }
    } else {
        echo "No outputImages found for item $i\n";
    }
}
?>


4. Custom Development

If the default model weights provided by the seal text recognition pipeline do not meet your requirements in terms of accuracy or speed, you can try to fine-tune the existing models using your own domain-specific or application data to improve the recognition performance of the seal text recognition pipeline in your scenario.

4.1 Model Fine-Tuning

Since the seal text recognition pipeline consists of several modules, if the pipeline's performance does not meet expectations, the issue may arise from any one of these modules. You can analyze images with poor recognition results to identify which module is problematic and refer to the corresponding fine-tuning tutorial links in the table below for model fine-tuning.

Scenario Fine-Tuning Module Fine-Tuning Reference Link
Inaccurate or missing seal position detection Layout Detection Module Link
Missing text detection Text Detection Module Link
Inaccurate text content Text Recognition Module Link
Inaccurate full-image rotation correction Document Image Orientation Classification Module Link
Inaccurate image distortion correction Text Image Correction Module Not supported for fine-tuning

4.2 Model Application

After you complete the fine-tuning training with a private dataset, you can obtain the local model weight files. You can then use the fine-tuned model weights by specifying the local model save path through parameters or by using a custom pipeline configuration file.

4.2.1 Specify Local Model Path via Parameters

When initializing the pipeline object, specify the local model path through parameters. Taking the usage of fine-tuned weights for a text detection model as an example, the demonstration is as follows:

Command line method:

# Single card training (default training method)
python3 tools/train.py -c configs/table/SLANet_plus.yml \
    -o Global.pretrained_model=./SLANet_plus_pretrained.pdparams
    Train.dataset.data_dir=./table_rec_dataset_examples \
    Train.dataset.label_file_list='[./table_rec_dataset_examples/train.txt]' \
    Eval.dataset.data_dir=./table_rec_dataset_examples \
    Eval.dataset.label_file_list='[./table_rec_dataset_examples/val.txt]'

# Multi-card training, specify card numbers via --gpus parameter
python3 -m paddle.distributed.launch --gpus '0,1,2,3' tools/train.py \
    -c configs/table/SLANet_plus.yml \
    -o Global.pretrained_model=./SLANet_plus_pretrained.pdparams
    -o Global.pretrained_model=./PP-OCRv5_server_det_pretrained.pdparams \
    Train.dataset.data_dir=./table_rec_dataset_examples \
    Train.dataset.label_file_list='[./table_rec_dataset_examples/train.txt]' \
    Eval.dataset.data_dir=./table_rec_dataset_examples \
    Eval.dataset.label_file_list='[./table_rec_dataset_examples/val.txt]'

4.3 Model Evaluation

You can evaluate the trained weights, such as output/xxx/xxx.pdparams, using the following command:

# Note to set the path of pretrained_model to the local path. If you use the model saved by your own training, please modify the path and file name to {path/to/weights}/{model_name}.
 # Demo test set evaluation
 python3 tools/eval.py -c configs/table/SLANet_plus.yml -o \
    Global.pretrained_model=output/xxx/xxx.pdparams
    Eval.dataset.data_dir=./table_rec_dataset_examples \
    Eval.dataset.label_file_list='[./table_rec_dataset_examples/val.txt]'

4.4 Model Export

 python3 tools/export_model.py -c configs/table/SLANet_plus.yml -o \
    Global.pretrained_model=output/xxx/xxx.pdparams \
    Global.save_inference_dir="./SLANet_plus_infer/"

After exporting the model, the static graph model will be stored in ./SLANet_plus_infer/ in the current directory. In this directory, you will see the following files:

./SLANet_plus_infer/
├── inference.json
├── inference.pdiparams
├── inference.yml
At this point, secondary development is complete, and this static graph model can be directly integrated into the PaddleOCR API.

5. FAQ

Comments