跳转至

文本检测模块使用教程

一、概述

文本检测模块是OCR(光学字符识别)系统中的关键组成部分,负责在图像中定位和标记出包含文本的区域。该模块的性能直接影响到整个OCR系统的准确性和效率。文本检测模块通常会输出文本区域的边界框(Bounding Boxes),这些边界框将作为输入传递给文本识别模块进行后续处理。

二、支持模型列表

模型模型下载链接 检测Hmean(%) GPU推理耗时(ms)
[常规模式 / 高性能模式]
CPU推理耗时(ms)
[常规模式 / 高性能模式]
模型存储大小(M) 介绍
PP-OCRv5_server_det推理模型/训练模型 83.8 89.55 / 70.19 371.65 / 371.65 84.3 PP-OCRv5 的服务端文本检测模型,精度更高,适合在性能较好的服务器上部署
PP-OCRv5_mobile_det推理模型/训练模型 79.0 8.79 / 3.13 51.00 / 28.58 4.7 PP-OCRv5 的移动端文本检测模型,效率更高,适合在端侧设备部署
PP-OCRv4_server_det推理模型/训练模型 69.2 83.34 / 80.91 442.58 / 442.58 109 PP-OCRv4 的服务端文本检测模型,精度更高,适合在性能较好的服务器上部署
PP-OCRv4_mobile_det推理模型/训练模型 63.8 8.79 / 3.13 51.00 / 28.58 4.7 PP-OCRv4 的移动端文本检测模型,效率更高,适合在端侧设备部署

测试环境说明:

  • 性能测试环境
    • 测试数据集:PaddleOCR3.0 全新构建多语种(包含中、繁、英、日),覆盖街景、网图、文档、手写、模糊、旋转、扭曲等多个场景的文本检测数据集,包含2677 张图片。
    • 硬件配置:
      • GPU:NVIDIA Tesla T4
      • CPU:Intel Xeon Gold 6271C @ 2.60GHz
      • 其他环境:Ubuntu 20.04 / cuDNN 8.6 / TensorRT 8.5.2.2
  • 推理模式说明
模式 GPU配置 CPU配置 加速技术组合
常规模式 FP32精度 / 无TRT加速 FP32精度 / 8线程 PaddleInference
高性能模式 选择先验精度类型和加速策略的最优组合 FP32精度 / 8线程 选择先验最优后端(Paddle/OpenVINO/TRT等)

三、快速开始

❗ 在快速开始前,请先安装 PaddleOCR 的 wheel 包,详细请参考 安装教程

使用一行命令即可快速体验:

paddleocr text_detection -i https://paddle-model-ecology.bj.bcebos.com/paddlex/imgs/demo_image/general_ocr_001.png

您也可以将文本检测的模块中的模型推理集成到您的项目中。运行以下代码前,请您下载示例图片到本地。

from paddleocr import TextDetection
model = TextDetection(model_name="PP-OCRv5_server_det")
output = model.predict("general_ocr_001.png", batch_size=1)
for res in output:
    res.print()
    res.save_to_img(save_path="./output/")
    res.save_to_json(save_path="./output/res.json")

运行后,得到的结果为:

{'res': {'input_path': 'general_ocr_001.png', 'page_index': None, 'dt_polys': array([[[ 75, 549],
        ...,
        [ 77, 586]],

       ...,

       [[ 31, 406],
        ...,
        [ 34, 455]]], dtype=int16), 'dt_scores': [0.873949039891189, 0.8948166013613552, 0.8842595305917041, 0.876953790920377]}}

运行结果参数含义如下: - input_path:表示输入待预测图像的路径 - page_index:如果输入是PDF文件,则表示当前是PDF的第几页,否则为 None - dt_polys:表示预测的文本检测框,其中每个文本检测框包含一个四边形的四个顶点。其中每个顶点都是一个列表,分别表示该顶点的x坐标和y坐标 - dt_scores:表示预测的文本检测框的置信度

可视化图片如下:

相关方法、参数等说明如下:

  • TextDetection实例化文本检测模型(此处以PP-OCRv5_server_det为例),具体说明如下:
参数 参数说明 参数类型 默认值
model_name 模型名称。所有支持的文本检测模型名称,如 PP-OCRv5_mobile_det str None
model_dir 模型存储路径 str None
device 用于推理的设备。
例如:cpugpunpugpu:0gpu:0,1
如指定多个设备,将进行并行推理。
默认情况下,优先使用 GPU 0;若不可用则使用 CPU。
str None
enable_hpi 是否启用高性能推理。 bool False
use_tensorrt 是否启用 Paddle Inference 的 TensorRT 子图引擎。 bool False
min_subgraph_size 当使用 Paddle Inference 的 TensorRT 子图引擎时,设置的最小子图大小。 int 3
precision 当使用 Paddle Inference 的 TensorRT 子图引擎时设置的计算精度。
可选项:fp32fp16 等。
str fp32
enable_mkldnn 是否启用MKL-DNN加速库。
bool True
cpu_threads 在 CPU 上推理时使用的线程数量。 int 10
limit_side_len 检测的图像边长限制:int 表示边长限制数值,如果设置为None, 将默认使用PaddleOCR官方模型配置中的该参数值。 int / None None
limit_type 检测的图像边长限制,检测的边长限制类型,"min" 表示保证图像最短边不小于det_limit_side_len,"max"表示保证图像最长边不大于limit_side_len。如果设置为None, 将默认使用PaddleOCR官方模型配置中的该参数值。 str / None None
thresh 像素得分阈值。输出概率图中得分大于该阈值的像素点被认为是文本像素。可选大于0的float任意浮点数,如果设置为None, 将默认使用PaddleOCR官方模型配置中的该参数值。 float / None None
box_thresh 检测结果边框内,所有像素点的平均得分大于该阈值时,该结果会被认为是文字区域。可选大于0的float任意浮点数,如果设置为None, 将默认使用PaddleOCR官方模型配置中的该参数值。 float / None None
unclip_ratio Vatti clipping算法的扩张系数,使用该方法对文字区域进行扩张。可选大于0的任意浮点数。如果设置为None, 将默认使用PaddleOCR官方模型配置中的该参数值。 float / None None
input_shape 模型输入图像尺寸,格式为 (C, H, W)。若为 None 将默认使用PaddleOCR官方模型配置中的该参数值。 tuple / None None
  • 其中,model_name 必须指定,指定 model_name 后,默认使用 PaddleX 内置的模型参数,在此基础上,指定 model_dir 时,使用用户自定义的模型。

  • 调用文本检测模型的 predict() 方法进行推理预测,该方法会返回一个结果列表。另外,本模块还提供了 predict_iter() 方法。两者在参数接受和结果返回方面是完全一致的,区别在于 predict_iter() 返回的是一个 generator,能够逐步处理和获取预测结果,适合处理大型数据集或希望节省内存的场景。可以根据实际需求选择使用这两种方法中的任意一种。predict() 方法参数有 inputbatch_sizelimit_side_lenlimit_typethreshbox_threshmax_candidatesunclip_ratio,具体说明如下:

参数 参数说明 参数类型 默认值
input 待预测数据,支持多种输入类型,必填。
  • Python Var:如 numpy.ndarray 表示的图像数据
  • str:如图像文件或者PDF文件的本地路径:/root/data/img.jpg如URL链接,如图像文件或PDF文件的网络URL:示例如本地目录,该目录下需包含待预测图像,如本地路径:/root/data/(当前不支持目录中包含PDF文件的预测,PDF文件需要指定到具体文件路径)
  • List:列表元素需为上述类型数据,如[numpy.ndarray, numpy.ndarray]["/root/data/img1.jpg", "/root/data/img2.jpg"]["/root/data1", "/root/data2"]
Python Var|str|list
batch_size 批大小,可设置为任意正整数。 int 1
limit_side_len 检测的图像边长限制:int 表示边长限制数值,如果设置为None, 如果设置为None, 将默认使用模型初始化的该参数值。 int / None None
limit_type 检测的图像边长限制,检测的边长限制类型,"min" 表示保证图像最短边不小于det_limit_side_len,"max"表示保证图像最长边不大于limit_side_len。如果设置为None, 将默认使用模型初始化的该参数值。 str / None None
thresh 像素得分阈值。输出概率图中得分大于该阈值的像素点被认为是文本像素。可选大于0的float任意浮点数,如果设置为None, 将默认使用模型初始化的该参数值。 float / None None
box_thresh 检测结果边框内,所有像素点的平均得分大于该阈值时,该结果会被认为是文字区域。可选大于0的float任意浮点数,如果设置为None, 将默认使用模型初始化的该参数值。 float / None None
unclip_ratio Vatti clipping算法的扩张系数,使用该方法对文字区域进行扩张。可选大于0的任意浮点数。如果设置为None, 将默认使用模型初始化的该参数值。 float / None None
  • 对预测结果进行处理,每个样本的预测结果均为对应的Result对象,且支持打印、保存为图片、保存为json文件的操作:
方法 方法说明 参数 参数类型 参数说明 默认值
print() 打印结果到终端 format_json bool 是否对输出内容进行使用 JSON 缩进格式化 True
indent int 指定缩进级别,以美化输出的 JSON 数据,使其更具可读性,仅当 format_jsonTrue 时有效 4
ensure_ascii bool 控制是否将非 ASCII 字符转义为 Unicode。设置为 True 时,所有非 ASCII 字符将被转义;False 则保留原始字符,仅当format_jsonTrue时有效 False
save_to_json() 将结果保存为json格式的文件 save_path str 保存的文件路径,当为目录时,保存文件命名与输入文件类型命名一致
indent int 指定缩进级别,以美化输出的 JSON 数据,使其更具可读性,仅当 format_jsonTrue 时有效 4
ensure_ascii bool 控制是否将非 ASCII 字符转义为 Unicode。设置为 True 时,所有非 ASCII 字符将被转义;False 则保留原始字符,仅当format_jsonTrue时有效 False
save_to_img() 将结果保存为图像格式的文件 save_path str 保存的文件路径,当为目录时,保存文件命名与输入文件类型命名一致
  • 此外,也支持通过属性获取带结果的可视化图像和预测结果,具体如下:
属性 属性说明
json 获取预测的json格式的结果
img 获取格式为dict的可视化图像

四、二次开发

如果以上模型在您的场景上效果仍然不理想,您可以尝试以下步骤进行二次开发,此处以训练 PP-OCRv5_server_det 举例,其他模型替换对应配置文件即可。首先,您需要准备文本检测的数据集,可以参考文本检测 Demo 数据的格式准备,准备好后,即可按照以下步骤进行模型训练和导出,导出后,可以将模型快速集成到上述 API 中。此处以文本检测 Demo 数据示例。在训练模型之前,请确保已经按照安装文档安装了 PaddleOCR 所需要的依赖。

4.1 数据集、预训练模型准备

4.1.1 准备数据集

# 下载示例数据集
wget https://paddle-model-ecology.bj.bcebos.com/paddlex/data/ocr_det_dataset_examples.tar
tar -xf ocr_det_dataset_examples.tar

4.1.2 下载预训练模型

# 下载 PP-OCRv5_server_det 预训练模型
wget https://paddle-model-ecology.bj.bcebos.com/paddlex/official_pretrained_model/PP-OCRv5_server_det_pretrained.pdparams 

4.2 模型训练

PaddleOCR 对代码进行了模块化,训练 PP-OCRv5_server_det 识别模型时需要使用 PP-OCRv5_server_det配置文件

训练命令如下:

#单卡训练 (默认训练方式)
python3 tools/train.py -c configs/det/PP-OCRv5/PP-OCRv5_server_det.yml \
    -o Global.pretrained_model=./PP-OCRv5_server_det_pretrained.pdparams \
    Train.dataset.data_dir=./ocr_det_dataset_examples \
    Train.dataset.label_file_list='[./ocr_det_dataset_examples/train.txt]' \
    Eval.dataset.data_dir=./ocr_det_dataset_examples \
    Eval.dataset.label_file_list='[./ocr_det_dataset_examples/val.txt]'

#多卡训练,通过--gpus参数指定卡号
python3 -m paddle.distributed.launch --gpus '0,1,2,3' tools/train.py \
    -c configs/det/PP-OCRv5/PP-OCRv5_server_det.yml \
    -o Global.pretrained_model=./PP-OCRv5_server_det_pretrained.pdparams \
    Train.dataset.data_dir=./ocr_det_dataset_examples \
    Train.dataset.label_file_list='[./ocr_det_dataset_examples/train.txt]' \
    Eval.dataset.data_dir=./ocr_det_dataset_examples \
    Eval.dataset.label_file_list='[./ocr_det_dataset_examples/val.txt]'

4.3 模型评估

您可以评估已经训练好的权重,如,output/PP-OCRv5_server_det/best_accuracy.pdprams,使用如下命令进行评估:

# 注意将pretrained_model的路径设置为本地路径。若使用自行训练保存的模型,请注意修改路径和文件名为{path/to/weights}/{model_name}。
 # demo 测试集评估
python3 tools/eval.py -c configs/det/PP-OCRv5/PP-OCRv5_server_det.yml \
    -o Global.pretrained_model=output/PP-OCRv5_server_det/best_accuracy.pdparams \
    Eval.dataset.data_dir=./ocr_det_dataset_examples \
    Eval.dataset.label_file_list='[./ocr_det_dataset_examples/val.txt]'

4.4 模型导出

python3 tools/export_model.py -c configs/det/PP-OCRv5/PP-OCRv5_server_det.yml -o \
    Global.pretrained_model=output/PP-OCRv5_server_det/best_accuracy.pdparams \
    Global.save_inference_dir="./PP-OCRv5_server_det_infer/"

导出模型后,静态图模型会存放于当前目录的./PP-OCRv5_server_det_infer/中,在该目录下,您将看到如下文件:

./PP-OCRv5_server_det_infer/
├── inference.json
├── inference.pdiparams
├── inference.yml
至此,二次开发完成,该静态图模型可以直接集成到 PaddleOCR 的 API 中。

五、FAQ

  • 通过参数limit_typelimit_side_len来对图片的尺寸进行限制,limit_type可选参数为[max, min],limit_side_len 为正整数,一般设置为 32 的倍数,比如 960。 如果输入图形分辨率不大,建议使用limit_type=minlimit_side_len=960 节省计算资源的同时能获得最佳检测效果。如果输入图片的分辨率比较大,而且想使用更大的分辨率预测,可以设置 limit_side_len 为想要的值,比如 1216。

评论