PP-Structure 快速开始
1. 准备环境
1.1 安装PaddlePaddle
如果您没有基础的Python运行环境,请参考运行环境准备 。
您的机器安装的是CUDA9或CUDA10,请运行以下命令安装
python3 -m pip install paddlepaddle-gpu -i https://mirror.baidu.com/pypi/simple
python3 -m pip install paddlepaddle -i https://mirror.baidu.com/pypi/simple
更多的版本需求,请参照飞桨官网安装文档 中的说明进行操作。
1.2 安装PaddleOCR whl包
# 安装 paddleocr,推荐使用2.6版本
pip3 install "paddleocr>=2.6.0.3"
# 安装 图像方向分类依赖包paddleclas(如不需要图像方向分类功能,可跳过)
pip3 install paddleclas>= 2 .4.3
2. 便捷使用
2.1 命令行使用
2.1.1 图像方向分类+版面分析+表格识别
paddleocr --image_dir= ppstructure/docs/table/1.png --type= structure --image_orientation= true
2.1.2 版面分析+表格识别
paddleocr --image_dir= ppstructure/docs/table/1.png --type= structure
2.1.3 版面分析
paddleocr --image_dir= ppstructure/docs/table/1.png --type= structure --table= false --ocr= false
2.1.4 表格识别
paddleocr --image_dir= ppstructure/docs/table/table.jpg --type= structure --layout= false
2.1.5 关键信息抽取
关键信息抽取暂不支持通过whl包调用,详细使用教程请参考:关键信息抽取教程 。
2.1.6 版面恢复
版面恢复分为2种方法,详细介绍请参考:版面恢复教程 :
通过PDF解析(只支持pdf格式的输入):
paddleocr --image_dir= ppstructure/docs/recovery/UnrealText.pdf --type= structure --recovery= true --use_pdf2docx_api= true
通过OCR技术:
版面恢复分为2种方法,详细介绍请参考:版面恢复教程 :
通过PDF解析(只支持pdf格式的输入):
paddleocr --image_dir= ppstructure/docs/recovery/UnrealText.pdf --type= structure --recovery= true --use_pdf2docx_api= true
通过OCR技术:
# 中文测试图
paddleocr --image_dir= ppstructure/docs/table/1.png --type= structure --recovery= true
# 英文测试图
paddleocr --image_dir= ppstructure/docs/table/1.png --type= structure --recovery= true --lang= 'en'
# pdf测试文件
paddleocr --image_dir= ppstructure/docs/recovery/UnrealText.pdf --type= structure --recovery= true --lang= 'en'
2.1.7 版面恢复+转换为markdown文件
不使用LaTeXOCR模型进行公式识别:
paddleocr --image_dir= ppstructure/docs/recovery/UnrealText.pdf --type= structure --recovery= true --recovery_to_markdown= true --lang= 'en'
使用LaTeXOCR模型进行公式识别,其中必须使用中文layout模型:
paddleocr --image_dir= ppstructure/docs/recovery/UnrealText.pdf --type= structure --recovery= true --formula= true --recovery_to_markdown= true --lang= 'ch'
2.2 Python脚本使用
2.2.1 图像方向分类+版面分析+表格识别
import os
import cv2
from paddleocr import PPStructure , draw_structure_result , save_structure_res
table_engine = PPStructure ( show_log = True , image_orientation = True )
save_folder = './output'
img_path = 'ppstructure/docs/table/1.png'
img = cv2 . imread ( img_path )
result = table_engine ( img )
save_structure_res ( result , save_folder , os . path . basename ( img_path ) . split ( '.' )[ 0 ])
for line in result :
line . pop ( 'img' )
print ( line )
from PIL import Image
font_path = 'doc/fonts/simfang.ttf' # PaddleOCR下提供字体包
image = Image . open ( img_path ) . convert ( 'RGB' )
im_show = draw_structure_result ( image , result , font_path = font_path )
im_show = Image . fromarray ( im_show )
im_show . save ( 'result.jpg' )
2.2.2 版面分析+表格识别
import os
import cv2
from paddleocr import PPStructure , draw_structure_result , save_structure_res
table_engine = PPStructure ( show_log = True )
save_folder = './output'
img_path = 'ppstructure/docs/table/1.png'
img = cv2 . imread ( img_path )
result = table_engine ( img )
save_structure_res ( result , save_folder , os . path . basename ( img_path ) . split ( '.' )[ 0 ])
for line in result :
line . pop ( 'img' )
print ( line )
from PIL import Image
font_path = 'doc/fonts/simfang.ttf' # PaddleOCR下提供字体包
image = Image . open ( img_path ) . convert ( 'RGB' )
im_show = draw_structure_result ( image , result , font_path = font_path )
im_show = Image . fromarray ( im_show )
im_show . save ( 'result.jpg' )
2.2.3 版面分析
import os
import cv2
from paddleocr import PPStructure , save_structure_res
table_engine = PPStructure ( table = False , ocr = False , show_log = True )
save_folder = './output'
img_path = 'ppstructure/docs/table/1.png'
img = cv2 . imread ( img_path )
result = table_engine ( img )
save_structure_res ( result , save_folder , os . path . basename ( img_path ) . split ( '.' )[ 0 ])
for line in result :
line . pop ( 'img' )
print ( line )
import os
import cv2
from paddleocr import PPStructure , save_structure_res
ocr_engine = PPStructure ( table = False , ocr = True , show_log = True )
save_folder = './output'
img_path = 'ppstructure/docs/recovery/UnrealText.pdf'
result = ocr_engine ( img_path )
for index , res in enumerate ( result ):
save_structure_res ( res , save_folder , os . path . basename ( img_path ) . split ( '.' )[ 0 ], index )
for res in result :
for line in res :
line . pop ( 'img' )
print ( line )
import os
import cv2
import numpy as np
from paddleocr import PPStructure , save_structure_res
from paddle.utils import try_import
from PIL import Image
ocr_engine = PPStructure ( table = False , ocr = True , show_log = True )
save_folder = './output'
img_path = 'ppstructure/docs/recovery/UnrealText.pdf'
fitz = try_import ( "fitz" )
imgs = []
with fitz . open ( img_path ) as pdf :
for pg in range ( 0 , pdf . page_count ):
page = pdf [ pg ]
mat = fitz . Matrix ( 2 , 2 )
pm = page . get_pixmap ( matrix = mat , alpha = False )
# if width or height > 2000 pixels, don't enlarge the image
if pm . width > 2000 or pm . height > 2000 :
pm = page . get_pixmap ( matrix = fitz . Matrix ( 1 , 1 ), alpha = False )
img = Image . frombytes ( "RGB" , [ pm . width , pm . height ], pm . samples )
img = cv2 . cvtColor ( np . array ( img ), cv2 . COLOR_RGB2BGR )
imgs . append ( img )
for index , img in enumerate ( imgs ):
result = ocr_engine ( img )
save_structure_res ( result , save_folder , os . path . basename ( img_path ) . split ( '.' )[ 0 ], index )
for line in result :
line . pop ( 'img' )
print ( line )
2.2.4 表格识别
import os
import cv2
from paddleocr import PPStructure , save_structure_res
table_engine = PPStructure ( layout = False , show_log = True )
save_folder = './output'
img_path = 'ppstructure/docs/table/table.jpg'
img = cv2 . imread ( img_path )
result = table_engine ( img )
save_structure_res ( result , save_folder , os . path . basename ( img_path ) . split ( '.' )[ 0 ])
for line in result :
line . pop ( 'img' )
print ( line )
2.2.5 关键信息抽取
关键信息抽取暂不支持通过whl包调用,详细使用教程请参考:inference文档 。
2.2.6 版面恢复
import os
import cv2
from paddleocr import PPStructure , save_structure_res
from paddleocr.ppstructure.recovery.recovery_to_doc import sorted_layout_boxes , convert_info_docx
# 中文测试图
table_engine = PPStructure ( recovery = True )
# 英文测试图
# table_engine = PPStructure(recovery=True, lang='en')
save_folder = './output'
img_path = 'ppstructure/docs/table/1.png'
img = cv2 . imread ( img_path )
result = table_engine ( img )
save_structure_res ( result , save_folder , os . path . basename ( img_path ) . split ( '.' )[ 0 ])
for line in result :
line . pop ( 'img' )
print ( line )
h , w , _ = img . shape
res = sorted_layout_boxes ( result , w )
convert_info_docx ( img , res , save_folder , os . path . basename ( img_path ) . split ( '.' )[ 0 ])
2.2.7 版面恢复+转换为markdown文件
import os
import cv2
from paddleocr import PPStructure , save_structure_res
from paddleocr.ppstructure.recovery.recovery_to_doc import sorted_layout_boxes
from paddleocr.ppstructure.recovery.recovery_to_markdown import convert_info_markdown
# 中文测试图
table_engine = PPStructure ( recovery = True )
# 英文测试图
# table_engine = PPStructure(recovery=True, lang='en')
save_folder = './output'
img_path = 'ppstructure/docs/table/1.png'
img = cv2 . imread ( img_path )
result = table_engine ( img )
save_structure_res ( result , save_folder , os . path . basename ( img_path ) . split ( '.' )[ 0 ])
for line in result :
line . pop ( 'img' )
print ( line )
h , w , _ = img . shape
res = sorted_layout_boxes ( result , w )
convert_info_markdown ( res , save_folder , os . path . basename ( img_path ) . split ( '.' )[ 0 ])
2.3 返回结果说明
PP-Structure的返回结果为一个dict组成的list,示例如下:
2.3.1 版面分析+表格识别
[
{ 'type' : 'Text' ,
'bbox' : [ 34 , 432 , 345 , 462 ] ,
'res' : ([[ 36 .0, 437 .0, 341 .0, 437 .0, 341 .0, 446 .0, 36 .0, 447 .0] , [ 41 .0, 454 .0, 125 .0, 453 .0, 125 .0, 459 .0, 41 .0, 460 .0]] ,
[( 'Tigure-6. The performance of CNN and IPT models using difforen' , 0 .90060663) , ( 'Tent ' , 0 .465441)])
}
]
dict 里各个字段说明如下:
字段
说明
type
图片区域的类型
bbox
图片区域的在原图的坐标,分别[左上角x,左上角y,右下角x,右下角y]
res
图片区域的OCR或表格识别结果。 表格: 一个dict,字段说明如下 html
: 表格的HTML字符串 在代码使用模式下,前向传入return_ocr_result_in_table=True可以拿到表格中每个文本的检测识别结果,对应为如下字段: boxes
: 文本检测坐标 rec_res
: 文本识别结果。 OCR: 一个包含各个单行文字的检测坐标和识别结果的元组
运行完成后,每张图片会在output
字段指定的目录下有一个同名目录,图片里的每个表格会存储为一个excel,图片区域会被裁剪之后保存下来,excel文件和图片名为表格在图片里的坐标。
/output/table/1/
└─ res.txt
└─ [454, 360, 824, 658].xlsx 表格识别结果
└─ [16, 2, 828, 305].jpg 被裁剪出的图片区域
└─ [17, 361, 404, 711].xlsx 表格识别结果
2.3.2 关键信息抽取
请参考:关键信息抽取教程 。
2.4 参数说明
字段
说明
默认值
output
结果保存地址
./output/table
table_max_len
表格结构模型预测时,图像的长边resize尺度
488
table_model_dir
表格结构模型 inference 模型地址
None
table_char_dict_path
表格结构模型所用字典地址
../ppocr/utils/dict/table_structure_dict.txt
merge_no_span_structure
表格识别模型中,是否对'\ '和'\ ' 进行合并
False
formula_model_dir
公式识别模型 inference 模型地址
None
formula_char_dict_path
公式识别模型所用字典地址
../ppocr/utils/dict/latex_ocr_tokenizer.json
layout_model_dir
版面分析模型 inference 模型地址
None
layout_dict_path
版面分析模型字典
../ppocr/utils/dict/layout_publaynet_dict.txt
layout_score_threshold
版面分析模型检测框阈值
0.5
layout_nms_threshold
版面分析模型nms阈值
0.5
kie_algorithm
kie模型算法
LayoutXLM
ser_model_dir
ser模型 inference 模型地址
None
ser_dict_path
ser模型字典
../train_data/XFUND/class_list_xfun.txt
mode
structure or kie
structure
image_orientation
前向中是否执行图像方向分类
False
layout
前向中是否执行版面分析
True
table
前向中是否执行表格识别
True
formula
前向中是否执行公式识别
False
ocr
对于版面分析中的非表格区域,是否执行ocr。当layout为False时会被自动设置为False
True
recovery
前向中是否执行版面恢复
False
recovery_to_markdown
是否将版面恢复结果转换为markdown文件
False
save_pdf
版面恢复导出docx文件的同时,是否导出pdf文件
False
structure_version
模型版本,可选 PP-structure和PP-structurev2
PP-structure
大部分参数和PaddleOCR whl包保持一致,见 whl包文档
3. 小结
通过本节内容,相信您已经熟练掌握通过PaddleOCR whl包调用PP-Structure相关功能的使用方法,您可以参考文档教程 ,获取包括模型训练、推理部署等更详细的使用教程。