手写数学公式识别算法-CAN¶
1. 算法简介¶
论文信息:
When Counting Meets HMER: Counting-Aware Network for Handwritten Mathematical Expression Recognition Bohan Li, Ye Yuan, Dingkang Liang, Xiao Liu, Zhilong Ji, Jinfeng Bai, Wenyu Liu, Xiang Bai ECCV, 2022
CAN
使用CROHME手写公式数据集进行训练,在对应测试集上的精度如下:
模型 | 骨干网络 | 配置文件 | ExpRate | 下载链接 |
---|---|---|---|---|
CAN | DenseNet | rec_d28_can.yml | 51.72% | 训练模型 |
2. 环境配置¶
请先参考《运行环境准备》配置PaddleOCR运行环境,参考《项目克隆》克隆项目代码。
3. 模型训练、评估、预测¶
3.1 模型训练¶
请参考文本识别训练教程。PaddleOCR对代码进行了模块化,训练CAN
识别模型时需要更换配置文件为CAN
的配置文件。
启动训练¶
具体地,在完成数据准备后,便可以启动训练,训练命令如下:
注意:
- 我们提供的数据集,即
CROHME数据集
将手写公式存储为黑底白字的格式,若您自行准备的数据集与之相反,即以白底黑字模式存储,请在训练时做出如下修改
- 默认每训练1个epoch(1105次iteration)进行1次评估,若您更改训练的batch_size,或更换数据集,请在训练时作出如下修改
3.2 评估¶
可下载已训练完成的模型文件,使用如下命令进行评估:
3.3 预测¶
使用如下命令进行单张图片预测:
4. 推理部署¶
4.1 Python推理¶
首先将训练得到best模型,转换成inference model。这里以训练完成的模型为例(模型下载地址 ),可以使用如下命令进行转换:
注意:
如果您是在自己的数据集上训练的模型,并且调整了字典文件,请注意修改配置文件中的character_dict_path
是否是所需要的字典文件。
转换成功后,在目录下有三个文件:
执行如下命令进行模型推理:
执行命令后,上面图像的预测结果(识别的文本)会打印到屏幕上,示例如下:
注意:
- 需要注意预测图像为黑底白字,即手写公式部分为白色,背景为黑色的图片。
- 在推理时需要设置参数
rec_char_dict_path
指定字典,如果您修改了字典,请修改该参数为您的字典文件。 - 如果您修改了预处理方法,需修改
tools/infer/predict_rec.py
中CAN的预处理为您的预处理方法。
4.2 C++推理部署¶
由于C++预处理后处理还未支持CAN,所以暂未支持
4.3 Serving服务化部署¶
暂不支持
4.4 更多推理部署¶
暂不支持
5. FAQ¶
- CROHME数据集来自于CAN源repo 。
引用¶
@misc{https://doi.org/10.48550/arxiv.2207.11463,
doi = {10.48550/ARXIV.2207.11463},
url = {https://arxiv.org/abs/2207.11463},
author = {Li, Bohan and Yuan, Ye and Liang, Dingkang and Liu, Xiao and Ji, Zhilong and Bai, Jinfeng and Liu, Wenyu and Bai, Xiang},
keywords = {Computer Vision and Pattern Recognition (cs.CV), Artificial Intelligence (cs.AI), FOS: Computer and information sciences, FOS: Computer and information sciences},
title = {When Counting Meets HMER: Counting-Aware Network for Handwritten Mathematical Expression Recognition},
publisher = {arXiv},
year = {2022},
copyright = {arXiv.org perpetual, non-exclusive license}
}