AMGNet¶
# linux
wget -nc https://paddle-org.bj.bcebos.com/paddlescience/datasets/AMGNet/data.zip
# windows
# curl https://paddle-org.bj.bcebos.com/paddlescience/datasets/AMGNet/data.zip -o data.zip
# unzip it
unzip data.zip
python amgnet_airfoil.py mode=eval EVAL.pretrained_model_path=https://paddle-org.bj.bcebos.com/paddlescience/models/amgnet/amgnet_airfoil_pretrained.pdparams
# linux
wget -nc https://paddle-org.bj.bcebos.com/paddlescience/datasets/AMGNet/data.zip
# windows
# curl https://paddle-org.bj.bcebos.com/paddlescience/datasets/AMGNet/data.zip -o data.zip
# unzip it
unzip data.zip
python amgnet_cylinder.py mode=eval EVAL.pretrained_model_path=https://paddle-org.bj.bcebos.com/paddlescience/models/amgnet/amgnet_cylinder_pretrained.pdparams
预训练模型 | 指标 |
---|---|
amgnet_airfoil_pretrained.pdparams | loss(RMSE_validator): 0.0001 RMSE.RMSE(RMSE_validator): 0.01315 |
amgnet_cylinder_pretrained.pdparams | loss(RMSE_validator): 0.00048 RMSE.RMSE(RMSE_validator): 0.02197 |
1. 背景简介¶
近年来,深度学习在计算机视觉和自然语言处理方面的成功应用,促使人们探索人工智能在科学计算领域的应用,尤其是在计算流体力学(CFD)领域的应用。
流体是非常复杂的物理系统,流体的行为由 Navier-Stokes 方程控制。基于网格的有限体积或有限元模拟方法是 CFD 中广泛使用的数值方法。计算流体动力学研究的物理问题往往非常复杂,通常需要大量的计算资源才能求出问题的解,因此需要在求解精度和计算成本之间进行权衡。为了进行数值模拟,计算域通常被网格离散化,由于网格具有良好的几何和物理问题表示能力,同时和图结构相契合,所以这篇文章的作者使用图神经网络,通过训练 CFD 仿真数据,构建了一种数据驱动模型来进行流场预测。
2. 问题定义¶
作者提出了一种基于图神经网络的 CFD 计算模型,称为 AMGNET(A Multi-scale Graph neural Network),该模型可以预测在不同物理参数下的流场。该方法有以下几个特点:
-
AMGNET 把 CFD 中的网格转化为图结构,通过图神经网络进行信息的处理和聚合,相比于传统的 GCN 方法,该方法的预测误差明显更低。
-
AMGNET 可以同时计算流体在 x 和 y 方向的速度,同时还能计算流体压强。
-
AMGNET 通过 RS 算法(Olson and Schroder, 2018)进行了图的粗化,仅使用少量节点即可进行预测,进一步提高了预测速度。
下图为该方法的网络结构图。该模型的基本原理就是将网格结构转化为图结构,然后通过网格中节点的物理信息、位置信息以及节点类型对图中的节点和边进行编码。接着对得到的图神经网络使用基于代数多重网格算法(RS)的粗化层进行粗化,将所有节点分类为粗节点集和细节点集,其中粗节点集是细节点集的子集。粗图的节点集合就是粗节点集,于是完成了图的粗化,缩小了图的规模。粗化完成后通过设计的图神经网络信息传递块(GN)来总结和提取图的特征。之后图恢复层采用反向操作,使用空间插值法(Qi et al.,2017)对图进行上采样。例如要对节点 \(i\) 插值,则在粗图中找到距离节点 \(i\) 最近的 \(k\) 个节点,然后通过公式计算得到节点 \(i\) 的特征。最后,通过解码器得到每个节点的速度与压力信息。
3. 问题求解¶
接下来开始讲解如何将问题一步一步地转化为 PaddleScience 代码,用深度学习的方法求解该问题。 为了快速理解 PaddleScience,接下来仅对模型构建、方程构建、计算域构建等关键步骤进行阐述,而其余细节请参考 API文档。
注意事项
本案例运行前需通过 pip install pgl pyamg
命令,安装 Paddle Graph Learning 图学习工具和 PyAMG 代数多重网格工具。
3.1 数据集下载¶
该案例使用的机翼数据集 Airfoil 来自 de Avila Belbute-Peres 等人,其中翼型数据集采用 NACA0012 翼型,包括 train, test 以及对应的网格数据 mesh_fine;圆柱数据集是原作者利用软件计算的 CFD 算例。
执行以下命令,下载并解压数据集。
3.2 模型构建¶
在本问题中,我们使用图神经网络 AMGNet
作为模型,其接收图结构数据,输出预测结果。
为了在计算时,准确快速地访问具体变量的值,我们在这里指定网络模型的输入变量名是 ("input", )
,输出变量名是 ("pred", )
,这些命名与后续代码保持一致。
3.3 约束构建¶
在本案例中,我们使用监督数据集对模型进行训练,因此需要构建监督约束。
在定义约束之前,我们需要指定数据集的路径等相关配置,将这些信息存放到对应的 YAML 文件中,如下所示。
接着定义训练损失函数的计算过程,如下所示。
最后构建监督约束,如下所示。
3.4 超参数设定¶
设置训练轮数等参数,如下所示。
3.5 优化器构建¶
训练过程会调用优化器来更新模型参数,此处选择较为常用的 Adam
优化器,并使用固定的 5e-4
作为学习率。
3.6 评估器构建¶
在训练过程中通常会按一定轮数间隔,用验证集(测试集)评估当前模型的训练情况,因此使用 ppsci.validate.SupervisedValidator
构建评估器,构建过程与 约束构建 类似,只需把数据目录改为测试集的目录,并在配置文件中设置 EVAL.batch_size=1
即可。
评估指标为预测结果和真实结果的 RMSE 值,因此需自定义指标计算函数,如下所示。
3.7 模型训练¶
完成上述设置之后,只需要将上述实例化的对象按顺序传递给 ppsci.solver.Solver
,然后启动训练。
3.8 结果可视化¶
训练完毕之后程序会对测试集中的数据进行预测,并以图片的形式对结果进行可视化,如下所示。
138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 |
|
138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 |
|
4. 完整代码¶
amgnet_airfoil.py | |
---|---|
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 |
|
amgnet_airfoil.py | |
---|---|
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 |
|
5. 结果展示¶
下方展示了模型对计算域中每个点的压力\(p(x,y)\)、x(水平)方向流速\(u(x,y)\)、y(垂直)方向流速\(v(x,y)\)的预测结果与参考结果。
可以看到模型预测结果与真实结果基本一致。