Utils.save_load(参数加载与保存) 模块¶
          ppsci.utils.save_load
¶
  
          load_checkpoint(path, model, optimizer, grad_scaler=None, equation=None, ema_model=None)
¶
  Load from checkpoint.
Parameters:
| Name | Type | Description | Default | 
|---|---|---|---|
| path | str | Path for checkpoint. | required | 
| model | Layer | Model with parameters. | required | 
| optimizer | Optimizer | Optimizer for model. | required | 
| grad_scaler | Optional[GradScaler] | GradScaler for AMP. Defaults to None. | None | 
| equation | Optional[Dict[str, PDE]] | Equations. Defaults to None. | None | 
| ema_model | Optional[AveragedModel] | Optional[ema.AveragedModel]: Average model. Defaults to None. | None | 
Returns:
| Type | Description | 
|---|---|
| Dict[str, Any] | Dict[str, Any]: Loaded metric information. | 
Source code in ppsci/utils/save_load.py
            
          save_checkpoint(model, optimizer, metric, grad_scaler=None, output_dir=None, prefix='model', equation=None, print_log=True, ema_model=None)
¶
  Save checkpoint, including model params, optimizer params, metric information.
Parameters:
| Name | Type | Description | Default | 
|---|---|---|---|
| model | Layer | Model with parameters. | required | 
| optimizer | Optional[Optimizer] | Optimizer for model. | required | 
| metric | Dict[str, float] | Metric information, such as {"RMSE": 0.1, "MAE": 0.2}. | required | 
| grad_scaler | Optional[GradScaler] | GradScaler for AMP. Defaults to None. | None | 
| output_dir | Optional[str] | Directory for checkpoint storage. | None | 
| prefix | str | Prefix for storage. Defaults to "model". | 'model' | 
| equation | Optional[Dict[str, PDE]] | Equations. Defaults to None. | None | 
| print_log | bool | Whether print saving log information, mainly for keeping log tidy without duplicate 'Finish saving checkpoint ...' log strings. Defaults to True. | True | 
| ema_model | Optional[AveragedModel] | Optional[ema.AveragedModel]: Average model. Defaults to None. | None | 
Examples:
>>> import ppsci
>>> import paddle
>>> from ppsci.utils import save_load
>>> model = ppsci.arch.MLP(("x", "y", "z"), ("u", "v", "w"), 5, 64, "tanh")
>>> optimizer = ppsci.optimizer.Adam(0.001)(model)
>>> save_load.save_checkpoint(model, optimizer, {"RMSE": 0.1}, output_dir="path/to/output/dir")
Source code in ppsci/utils/save_load.py
            
          load_pretrain(model, path, equation=None)
¶
  Load pretrained model from given path or url.
Parameters:
| Name | Type | Description | Default | 
|---|---|---|---|
| model | Layer | Model with parameters. | required | 
| path | str | File path or url of pretrained model, i.e.  | required | 
| equation | Optional[Dict[str, PDE]] | Equations. Defaults to None. | None | 
Examples:
>>> import ppsci
>>> from ppsci.utils import save_load
>>> model = ppsci.arch.MLP(("x", "y"), ("u", "v", "p"), 9, 50, "tanh")
>>> save_load.load_pretrain(
...     model=model,
...     path="path/to/pretrain_model")