Probability(概率编程) 模块¶
ppsci.probability
¶
HamiltonianMonteCarlo
¶
Using the HamiltonianMonteCarlo(HMC) to sample from the desired probability distribution. The HMC combine the Hamiltonian Dynamics and Markov Chain Monte Carlo sampling algorithm which is a more efficient way compared to the Metropolis Hasting (MH) method.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
distribution_fn |
Distribution
|
The Log (Posterior) Distribution function that of the parameters needed to be sampled. |
required |
path_len |
float
|
The total path length. |
1.0
|
step_size |
float
|
Every step size. |
0.25
|
num_warmup_steps |
int
|
The number of warm-up steps for the MCMC run. |
0
|
random_seed |
int
|
Random seed number. |
1024
|
Examples:
>>> import paddle
>>> from ppsci.probability.hmc import HamiltonianMonteCarlo
>>> def log_posterior(**kwargs):
... dist = paddle.distribution.Normal(loc=0, scale=1)
... return dist.log_prob(kwargs['x'])
>>> HMC = HamiltonianMonteCarlo(log_posterior, path_len=1.5, step_size=0.25)
>>> trial = HMC.run_chain(1000, {'x': paddle.to_tensor(0.0)})
Source code in ppsci/probability/hmc.py
44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 |
|
sample(last_position)
¶
Single step for sample