Python_infer(Python 推理) 模块¶
deploy.python_infer
¶
Predictor
¶
Initializes the inference engine with the given parameters.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
pdmodel_path |
Optional[str]
|
Path to the PaddlePaddle model file. Defaults to None. |
None
|
pdiparams_path |
Optional[str]
|
Path to the PaddlePaddle model parameters file. Defaults to None. |
None
|
device |
Literal['gpu', 'cpu', 'npu', 'xpu']
|
Device to use for inference. Defaults to "cpu". |
'cpu'
|
engine |
Literal['native', 'tensorrt', 'onnx', 'mkldnn']
|
Inference engine to use. Defaults to "native". |
'native'
|
precision |
Literal['fp32', 'fp16', 'int8']
|
Precision to use for inference. Defaults to "fp32". |
'fp32'
|
onnx_path |
Optional[str]
|
Path to the ONNX model file. Defaults to None. |
None
|
ir_optim |
bool
|
Whether to use IR optimization. Defaults to True. |
True
|
min_subgraph_size |
int
|
Minimum subgraph size for IR optimization. Defaults to 15. |
15
|
gpu_mem |
int
|
Initial size of GPU memory pool(MB). Defaults to 500(MB). |
500
|
gpu_id |
int
|
GPU ID to use. Defaults to 0. |
0
|
num_cpu_threads |
int
|
Number of CPU threads to use. Defaults to 1. |
10
|
Source code in deploy/python_infer/base.py
33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 |
|
GeneralPredictor
¶
Bases: PINNPredictor
Use PINNPredictor as GeneralPredictor.
PINNPredictor
¶
Bases: Predictor
General predictor for PINN-based models.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
cfg |
DictConfig
|
Running configuration. |
required |
Examples:
>>> import numpy as np
>>> import paddle
>>> from omegaconf import DictConfig
>>> from paddle.static import InputSpec
>>> import ppsci
>>> from deploy.python_infer import pinn_predictor
>>> model = ppsci.arch.MLP(("x", "y"), ("u", "v", "p"), 3, 16)
>>> static_model = paddle.jit.to_static(
... model,
... input_spec=[
... {
... key: InputSpec([None, 1], "float32", name=key)
... for key in model.input_keys
... },
... ],
... )
>>> paddle.jit.save(static_model, "./inference")
>>> cfg = DictConfig(
... {
... "log_freq": 10,
... "INFER": {
... "pdmodel_path": "./inference.pdmodel",
... "pdiparams_path": "./inference.pdiparams",
... "device": "cpu",
... "engine": "native",
... "precision": "fp32",
... "onnx_path": None,
... "ir_optim": True,
... "min_subgraph_size": 15,
... "gpu_mem": 500,
... "gpu_id": 0,
... "max_batch_size": 10,
... "num_cpu_threads": 10,
... }
... }
... )
>>> predictor = pinn_predictor.PINNPredictor(cfg)
>>> pred = predictor.predict(
... {
... "x": np.random.randn(4, 1).astype("float32"),
... "y": np.random.randn(4, 1).astype("float32"),
... },
... batch_size=2,
... )
>>> for k, v in pred.items():
... print(k, v.shape)
save_infer_model/scale_0.tmp_0 (4, 1)
save_infer_model/scale_1.tmp_0 (4, 1)
save_infer_model/scale_2.tmp_0 (4, 1)
Source code in deploy/python_infer/pinn_predictor.py
28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 |
|
predict(input_dict, batch_size=64)
¶
Predicts the output of the model for the given input.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
input_dict |
Dict[str, Union[ndarray, Tensor]]
|
A dictionary containing the input data. |
required |
batch_size |
int
|
The batch size to use for prediction. Defaults to 64. |
64
|
Returns:
Type | Description |
---|---|
Dict[str, ndarray]
|
Dict[str, np.ndarray]: A dictionary containing the predicted output. |
Source code in deploy/python_infer/pinn_predictor.py
106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 |
|