Kunlunxin xpu deployment
支持的模型
| 模型名 | 上下文长度 | 量化 | 所需卡数 | 部署命令 | 最低版本要求 |
|---|---|---|---|---|---|
| ERNIE-4.5-300B-A47B | 32K | WINT8 | 8 | export XPU_VISIBLE_DEVICES="0,1,2,3,4,5,6,7" export ENABLE_V1_KVCACHE_SCHEDULER=0 # V1不支持 python -m fastdeploy.entrypoints.openai.api_server \ --model PaddlePaddle/ERNIE-4.5-300B-A47B-Paddle \ --port 8188 \ --tensor-parallel-size 8 \ --max-model-len 32768 \ --max-num-seqs 64 \ --quantization "wint8" \ --gpu-memory-utilization 0.9 \ --load-choices "default" |
>=2.0.3 |
| ERNIE-4.5-300B-A47B | 32K | WINT4 | 4 (推荐) | export XPU_VISIBLE_DEVICES="0,1,2,3" or "4,5,6,7" export ENABLE_V1_KVCACHE_SCHEDULER=0 # V1不支持 python -m fastdeploy.entrypoints.openai.api_server \ --model PaddlePaddle/ERNIE-4.5-300B-A47B-Paddle \ --port 8188 \ --tensor-parallel-size 4 \ --max-model-len 32768 \ --max-num-seqs 64 \ --quantization "wint4" \ --gpu-memory-utilization 0.9 \ --load-choices "default" |
>=2.0.0 |
| ERNIE-4.5-300B-A47B | 32K | WINT4 | 8 | export XPU_VISIBLE_DEVICES="0,1,2,3,4,5,6,7" export ENABLE_V1_KVCACHE_SCHEDULER=0 # V1不支持 python -m fastdeploy.entrypoints.openai.api_server \ --model PaddlePaddle/ERNIE-4.5-300B-A47B-Paddle \ --port 8188 \ --tensor-parallel-size 8 \ --max-model-len 32768 \ --max-num-seqs 64 \ --quantization "wint4" \ --gpu-memory-utilization 0.95 \ --load-choices "default" |
>=2.0.0 |
| ERNIE-4.5-300B-A47B | 128K | WINT4 | 8 (推荐) | export XPU_VISIBLE_DEVICES="0,1,2,3,4,5,6,7" export ENABLE_V1_KVCACHE_SCHEDULER=0 # V1不支持 python -m fastdeploy.entrypoints.openai.api_server \ --model PaddlePaddle/ERNIE-4.5-300B-A47B-Paddle \ --port 8188 \ --tensor-parallel-size 8 \ --max-model-len 131072 \ --max-num-seqs 64 \ --quantization "wint4" \ --gpu-memory-utilization 0.9 \ --load-choices "default" |
>=2.0.0 |
| ERNIE-4.5-21B-A3B | 32K | BF16 | 1 | export XPU_VISIBLE_DEVICES="0" # 指定任意一张卡 export ENABLE_V1_KVCACHE_SCHEDULER=0 # V1不支持 python -m fastdeploy.entrypoints.openai.api_server \ --model PaddlePaddle/ERNIE-4.5-21B-A3B-Paddle \ --port 8188 \ --tensor-parallel-size 1 \ --max-model-len 32768 \ --max-num-seqs 128 \ --gpu-memory-utilization 0.9 \ --load-choices "default" |
>=2.1.0 |
| ERNIE-4.5-21B-A3B | 32K | WINT8 | 1 | export XPU_VISIBLE_DEVICES="0" # 指定任意一张卡 export ENABLE_V1_KVCACHE_SCHEDULER=0 # V1不支持 python -m fastdeploy.entrypoints.openai.api_server \ --model PaddlePaddle/ERNIE-4.5-21B-A3B-Paddle \ --port 8188 \ --tensor-parallel-size 1 \ --max-model-len 32768 \ --max-num-seqs 128 \ --quantization "wint8" \ --gpu-memory-utilization 0.9 \ --load-choices "default" |
>=2.1.0 |
| ERNIE-4.5-21B-A3B | 32K | WINT4 | 1 | export XPU_VISIBLE_DEVICES="0" # 指定任意一张卡 export ENABLE_V1_KVCACHE_SCHEDULER=0 # V1不支持 python -m fastdeploy.entrypoints.openai.api_server \ --model PaddlePaddle/ERNIE-4.5-21B-A3B-Paddle \ --port 8188 \ --tensor-parallel-size 1 \ --max-model-len 32768 \ --max-num-seqs 128 \ --quantization "wint4" \ --gpu-memory-utilization 0.9 \ --load-choices "default" |
>=2.1.0 |
| ERNIE-4.5-21B-A3B | 128K | BF16 | 1 | export XPU_VISIBLE_DEVICES="0" # 指定任意一张卡 export ENABLE_V1_KVCACHE_SCHEDULER=0 # V1不支持 python -m fastdeploy.entrypoints.openai.api_server \ --model PaddlePaddle/ERNIE-4.5-21B-A3B-Paddle \ --port 8188 \ --tensor-parallel-size 1 \ --max-model-len 131072 \ --max-num-seqs 128 \ --gpu-memory-utilization 0.9 \ --load-choices "default" |
>=2.1.0 |
| ERNIE-4.5-21B-A3B | 128K | WINT8 | 1 | export XPU_VISIBLE_DEVICES="0" # 指定任意一张卡 export ENABLE_V1_KVCACHE_SCHEDULER=0 # V1不支持 python -m fastdeploy.entrypoints.openai.api_server \ --model PaddlePaddle/ERNIE-4.5-21B-A3B-Paddle \ --port 8188 \ --tensor-parallel-size 1 \ --max-model-len 131072 \ --max-num-seqs 128 \ --quantization "wint8" \ --gpu-memory-utilization 0.9 \ --load-choices "default" |
>=2.1.0 |
| ERNIE-4.5-21B-A3B | 128K | WINT4 | 1 | export XPU_VISIBLE_DEVICES="0" # 指定任意一张卡 export ENABLE_V1_KVCACHE_SCHEDULER=0 # V1不支持 python -m fastdeploy.entrypoints.openai.api_server \ --model PaddlePaddle/ERNIE-4.5-21B-A3B-Paddle \ --port 8188 \ --tensor-parallel-size 1 \ --max-model-len 131072 \ --max-num-seqs 128 \ --quantization "wint4" \ --gpu-memory-utilization 0.9 \ --load-choices "default" |
>=2.1.0 |
| ERNIE-4.5-0.3B | 32K | BF16 | 1 | export XPU_VISIBLE_DEVICES="0" # 指定任意一张卡 export ENABLE_V1_KVCACHE_SCHEDULER=0 # V1不支持 python -m fastdeploy.entrypoints.openai.api_server \ --model PaddlePaddle/ERNIE-4.5-0.3B-Paddle \ --port 8188 \ --tensor-parallel-size 1 \ --max-model-len 32768 \ --max-num-seqs 128 \ --gpu-memory-utilization 0.9 \ --load-choices "default" |
>=2.0.3 |
| ERNIE-4.5-0.3B | 32K | WINT8 | 1 | export XPU_VISIBLE_DEVICES="x" # 指定任意一张卡 export ENABLE_V1_KVCACHE_SCHEDULER=0 # V1不支持 python -m fastdeploy.entrypoints.openai.api_server \ --model PaddlePaddle/ERNIE-4.5-0.3B-Paddle \ --port 8188 \ --tensor-parallel-size 1 \ --max-model-len 32768 \ --max-num-seqs 128 \ --quantization "wint8" \ --gpu-memory-utilization 0.9 \ --load-choices "default" |
>=2.0.3 |
| ERNIE-4.5-0.3B | 128K | BF16 | 1 | export XPU_VISIBLE_DEVICES="0" # 指定任意一张卡 export ENABLE_V1_KVCACHE_SCHEDULER=0 # V1不支持 python -m fastdeploy.entrypoints.openai.api_server \ --model PaddlePaddle/ERNIE-4.5-0.3B-Paddle \ --port 8188 \ --tensor-parallel-size 1 \ --max-model-len 131072 \ --max-num-seqs 128 \ --gpu-memory-utilization 0.9 \ --load-choices "default" |
>=2.0.3 |
| ERNIE-4.5-0.3B | 128K | WINT8 | 1 | export XPU_VISIBLE_DEVICES="0" # 指定任意一张卡 export ENABLE_V1_KVCACHE_SCHEDULER=0 # V1不支持 python -m fastdeploy.entrypoints.openai.api_server \ --model PaddlePaddle/ERNIE-4.5-0.3B-Paddle \ --port 8188 \ --tensor-parallel-size 1 \ --max-model-len 131072 \ --max-num-seqs 128 \ --quantization "wint8" \ --gpu-memory-utilization 0.9 \ --load-choices "default" |
>=2.0.3 |
| ERNIE-4.5-VL-28B-A3B | 32K | WINT8 | 1 | export XPU_VISIBLE_DEVICES="0"# 指定任意一张卡 python -m fastdeploy.entrypoints.openai.api_server \ --model PaddlePaddle/ERNIE-4.5-VL-28B-A3B-Paddle \ --port 8188 \ --tensor-parallel-size 1 \ --quantization "wint8" \ --max-model-len 32768 \ --max-num-seqs 10 \ --enable-mm \ --mm-processor-kwargs '{"video_max_frames": 30}' \ --limit-mm-per-prompt '{"image": 10, "video": 3}' \ --reasoning-parser ernie-45-vl |
>=2.3.0 |
| ERNIE-4.5-VL-424B-A47B | 32K | WINT8 | 8 | export XPU_VISIBLE_DEVICES="0,1,2,3,4,5,6,7" python -m fastdeploy.entrypoints.openai.api_server \ --model PaddlePaddle/ERNIE-4.5-VL-424B-A47B-Paddle \ --port 8188 \ --tensor-parallel-size 8 \ --quantization "wint8" \ --max-model-len 32768 \ --max-num-seqs 10 \ --enable-mm \ --mm-processor-kwargs '{"video_max_frames": 30}' \ --limit-mm-per-prompt '{"image": 10, "video": 3}' \ --reasoning-parser ernie-45-vl |
>=2.3.0 |
快速开始
基于ERNIE-4.5-300B-A47B-Paddle模型部署在线服务
启动服务
基于 WINT4 精度和 32K 上下文部署 ERNIE-4.5-300B-A47B-Paddle 模型到 4 卡 P800 服务器
export XPU_VISIBLE_DEVICES="0,1,2,3" # 设置使用的 XPU 卡
export ENABLE_V1_KVCACHE_SCHEDULER=0 # V1不支持
python -m fastdeploy.entrypoints.openai.api_server \
--model PaddlePaddle/ERNIE-4.5-300B-A47B-Paddle \
--port 8188 \
--tensor-parallel-size 4 \
--max-model-len 32768 \
--max-num-seqs 64 \
--quantization "wint4" \
--gpu-memory-utilization 0.9 \
--load-choices "default"
注意: 使用 P800 在 4 块 XPU 上进行部署时,由于受到卡间互联拓扑等硬件限制,仅支持以下两种配置方式:
export XPU_VISIBLE_DEVICES="0,1,2,3"
or
export XPU_VISIBLE_DEVICES="4,5,6,7"
更多参数可以参考 参数说明。
全部支持的模型可以在上方的 支持的模型 章节找到。
请求服务
您可以基于 OpenAI 协议,通过 curl 和 python 两种方式请求服务。
curl -X POST "http://0.0.0.0:8188/v1/chat/completions" \
-H "Content-Type: application/json" \
-d '{
"messages": [
{"role": "user", "content": "Where is the capital of China?"}
]
}'
import openai
host = "0.0.0.0"
port = "8188"
client = openai.Client(base_url=f"http://{host}:{port}/v1", api_key="null")
response = client.completions.create(
model="null",
prompt="Where is the capital of China?",
stream=True,
)
for chunk in response:
print(chunk.choices[0].text, end='')
print('\n')
response = client.chat.completions.create(
model="null",
messages=[
{"role": "user", "content": "Where is the capital of China?"},
],
stream=True,
)
for chunk in response:
if chunk.choices[0].delta:
print(chunk.choices[0].delta.content, end='')
print('\n')
OpenAI 协议的更多说明可参考文档 OpenAI Chat Completion API,以及与 OpenAI 协议的区别可以参考 兼容 OpenAI 协议的服务化部署。
基于ERNIE-4.5-VL-28B-A3B-Paddle模型部署在线服务
启动服务
基于 WINT8 精度和 32K 上下文部署 ERNIE-4.5-VL-28B-A3B-Paddle 模型到 单卡 P800 服务器
export XPU_VISIBLE_DEVICES="0" # Specify any card
python -m fastdeploy.entrypoints.openai.api_server \
--model PaddlePaddle/ERNIE-4.5-VL-28B-A3B-Paddle \
--port 8188 \
--tensor-parallel-size 1 \
--quantization "wint8" \
--max-model-len 32768 \
--max-num-seqs 10 \
--enable-mm \
--mm-processor-kwargs '{"video_max_frames": 30}' \
--limit-mm-per-prompt '{"image": 10, "video": 3}' \
--reasoning-parser ernie-45-vl
Send requests
curl -X POST "http://0.0.0.0:8188/v1/chat/completions" \
-H "Content-Type: application/json" \
-d '{
"messages": [
{"role": "user", "content": [
{"type": "image_url", "image_url": {"url": "https://paddlenlp.bj.bcebos.com/datasets/paddlemix/demo_images/example2.jpg", "detail": "high"}},
{"type": "text", "text": "请描述图片内容"}
]}
],
"metadata": {"enable_thinking": false}
}'
import openai
ip = "0.0.0.0"
service_http_port = "8188"
client = openai.Client(base_url=f"http://{ip}:{service_http_port}/v1", api_key="EMPTY_API_KEY")
response = client.chat.completions.create(
model="default",
messages=[
{"role": "user", "content": [
{"type": "image_url", "image_url": {"url": "https://paddlenlp.bj.bcebos.com/datasets/paddlemix/demo_images/example2.jpg", "detail": "high"}},
{"type": "text", "text": "请描述图片内容"}
]
},
],
temperature=0.0001,
max_tokens=10000,
stream=True,
top_p=0,
metadata={"enable_thinking": False},
)
def get_str(content_raw):
content_str = str(content_raw) if content_raw is not None else ''
return content_str
for chunk in response:
if chunk.choices[0].delta is not None and chunk.choices[0].delta.role != 'assistant':
reasoning_content = get_str(chunk.choices[0].delta.reasoning_content)
content = get_str(chunk.choices[0].delta.content)
is_reason = "[answer]" if reasoning_content == '' else "[think]"
is_reason = ""
print(reasoning_content+content+is_reason, end='', flush=True)
print('\n')