数据并行
在MOE模型下,开启专家并行(EP)与数据并行(DP)相结合,EP 分摊专家负载,结合 DP 实现请求并行处理。
数据分发策略
FastDeploy 通过splitwise scheduler 感知各个DP的负载状态,对接收到数据进行分发。
splitwise scheduler 依赖redis存储各个DP的负载状态,对接收到的数据进行分发。
专家并行 + 混合式部署
FastDeploy 提供了splitwise scheduler,可以感知各个DP的负载状态,对接收到的数据进行调度。
具体调度流程如下图,用户随机请求ip 与端口,通过redis获取负载状态,将数据分发到负载较低的DP进行推理。
离线推理
prompts = [
"Hello, my name is",
"你好,请问今天是星期",
"请写6个以数字开头的成语",
"写一个300字的小说大纲,内容是李白穿越到现代,最后成为公司文职人员的故事",
"我要采访一位科幻作家,创建一个包含5个问题的列表"
]
sampling_params = SamplingParams(temperature=0.8, top_p=0.95, max_tokens=128)
llm = LLM(
model="ERNIE-4_5-300B-A47B-FP8-Paddle",
tensor_parallel_size=1,
data_parallel_size=8,
max_model_len=8192,
num_gpu_blocks_override=1024,
engine_worker_queue_port="6077,6078,6079,6080,6081,6082,6083,6084",
enable_expert_parallel=True,
scheduler_name="splitwise",
scheduler_host="127.0.0.1",
scheduler_topic="test",
scheduler_port=6379
)
outputs = llm.generate(prompts, sampling_params)
for output in outputs:
prompt = output.prompt
generated_text = output.outputs.text
print("generated_text: ", generated_text)
print("\n")
在线推理
python -m fastdeploy.entrypoints.openai.api_server \
--model ERNIE-4_5-300B-A47B-FP8-Paddle \
--port 8184 --metrics-port 8185 \
--engine-worker-queue-port "6077,6078,6079,6080,6081,6082,6083,6084" \
--data-parallel-size 8 --tensor-parallel-size 1\
--enable-expert-parallel \
--scheduler-name "splitwise" \
--scheduler-host "127.0.0.1" \
--scheduler-port 6379 \
--scheduler-topic "test" \
--scheduler-ttl 9000
用户自行调度
FastDeploy 提供了multi_api_server,用户可以拉起多个api server,用户自行选择dp 进行请求,在该种情况下用户可以自行添加负载均衡模型进行调度。(目前该种方式只支持在线推理)
在线推理
export FD_ENABLE_MULTI_API_SERVER=1
python -m fastdeploy.entrypoints.openai.multi_api_server \
--ports "1811,1822,1833,1844,1855,1866,1877,1888" \
--num-servers 8 \
--metrics-ports "3101,3201,3301,3401,3501,3601,3701,3801" \
--args --model ERNIE-4_5-300B-A47B-FP8-Paddle \
--engine-worker-queue-port "25611,25621,25631,25641,25651,25661,25671,25681" \
--tensor-parallel-size 1 \
--data-parallel-size 8 \
--max-model-len 12288 \
--max-num-seqs 64 \
--num-gpu-blocks-override 256 \
--enable-expert-parallel
参数说明
- num-servers: 指定拉起的api server 的数量
- ports: 指定拉起的api server 的端口
- args: 指定拉起的api server 的参数
数据并行 + 分离式部署
具体可以参考分离式部署
在线推理
多机部署时需要确认当前网卡是否支持RDMA,并且需要集群中所有节点网络互通。
注意:
* KVCACHE_RDMA_NICS
指定当前机器的RDMA网卡,多个网卡用逗号隔开。
* 仓库中提供了自动检测RDMA网卡的脚本 bash scripts/get_rdma_nics.sh <device>
, 其中 cpu
或 gpu
。
prefill 实例
export FD_LOG_DIR="log_prefill"
export CUDA_VISIBLE_DEVICES=0,1,2,3,4,5,6,7
echo "set RDMA NICS"
export $(bash scripts/get_rdma_nics.sh gpu)
echo "KVCACHE_RDMA_NICS ${KVCACHE_RDMA_NICS}"
python -m fastdeploy.entrypoints.openai.api_server \
--model ERNIE-4_5-300B-A47B-FP8-Paddle \
--port 8180 --metrics-port 8181 \
--engine-worker-queue-port "25611,25621,25631,25641,25651,25661,25671,25681" \
--cache-queue-port 8183 \
--tensor-parallel-size 1 \
--data-parallel-size 4 \
--enable-expert-parallel \
--cache-transfer-protocol "rdma,ipc" \
--rdma-comm-ports "7671,7672,7673,7674,7675,7676,7677,7678" \
--pd-comm-port "2334" \
--splitwise-role "prefill" \
--scheduler-name "splitwise" \
--scheduler-host "127.0.0.1" \
--scheduler-port 6379 \
--scheduler-topic "test" \
--scheduler-ttl 9000
decode 实例
export FD_LOG_DIR="log_decode"
export CUDA_VISIBLE_DEVICES=0,1,2,3,4,5,6,7
echo "set RDMA NICS"
export $(bash scripts/get_rdma_nics.sh gpu)
echo "KVCACHE_RDMA_NICS ${KVCACHE_RDMA_NICS}"
python -m fastdeploy.entrypoints.openai.api_server \
--model ERNIE-4_5-300B-A47B-FP8-Paddle \
--port 8184 --metrics-port 8185 \
--engine-worker-queue-port "25611,25621,25631,25641,25651,25661,25671,25681" \
--cache-queue-port 8187 \
--tensor-parallel-size 1 \
--data-parallel-size 4 \
--enable-expert-parallel \
--scheduler-name "splitwise" \
--cache-transfer-protocol "rdma,ipc" \
--rdma-comm-ports "7671,7672,7673,7674,7675,7676,7677,7678" \
--pd-comm-port "2334" \
--scheduler-host "127.0.0.1" \
--scheduler-port 6379 \
--scheduler-ttl 9000
--scheduler-topic "test" \
--splitwise-role "decode"