Kunlunxin xpu deployment
Supported Models
| Model Name | Context Length | Quantization | XPUs Required | Deployment Commands | Applicable Version |
|---|---|---|---|---|---|
| ERNIE-4.5-300B-A47B | 32K | WINT8 | 8 | export XPU_VISIBLE_DEVICES="0,1,2,3,4,5,6,7" python -m fastdeploy.entrypoints.openai.api_server \ --model PaddlePaddle/ERNIE-4.5-300B-A47B-Paddle \ --port 8188 \ --tensor-parallel-size 8 \ --max-model-len 32768 \ --max-num-seqs 64 \ --quantization "wint8" \ --gpu-memory-utilization 0.9 |
2.3.0 |
| ERNIE-4.5-300B-A47B | 32K | WINT4 | 4 (Recommended) | export XPU_VISIBLE_DEVICES="0,1,2,3" or "4,5,6,7" python -m fastdeploy.entrypoints.openai.api_server \ --model PaddlePaddle/ERNIE-4.5-300B-A47B-Paddle \ --port 8188 \ --tensor-parallel-size 4 \ --max-model-len 32768 \ --max-num-seqs 64 \ --quantization "wint4" \ --gpu-memory-utilization 0.9 |
2.3.0 |
| ERNIE-4.5-300B-A47B | 32K | WINT4 | 8 | export XPU_VISIBLE_DEVICES="0,1,2,3,4,5,6,7" python -m fastdeploy.entrypoints.openai.api_server \ --model PaddlePaddle/ERNIE-4.5-300B-A47B-Paddle \ --port 8188 \ --tensor-parallel-size 8 \ --max-model-len 32768 \ --max-num-seqs 64 \ --quantization "wint4" \ --gpu-memory-utilization 0.95 |
2.3.0 |
| ERNIE-4.5-300B-A47B | 128K | WINT4 | 8 | export XPU_VISIBLE_DEVICES="0,1,2,3,4,5,6,7" python -m fastdeploy.entrypoints.openai.api_server \ --model PaddlePaddle/ERNIE-4.5-300B-A47B-Paddle \ --port 8188 \ --tensor-parallel-size 8 \ --max-model-len 131072 \ --max-num-seqs 64 \ --quantization "wint4" \ --gpu-memory-utilization 0.9 |
2.3.0 |
| ERNIE-4.5-21B-A3B | 32K | BF16 | 1 | export XPU_VISIBLE_DEVICES="0" # Specify any card python -m fastdeploy.entrypoints.openai.api_server \ --model PaddlePaddle/ERNIE-4.5-21B-A3B-Paddle \ --port 8188 \ --tensor-parallel-size 1 \ --max-model-len 32768 \ --max-num-seqs 128 \ --gpu-memory-utilization 0.9 |
2.3.0 |
| ERNIE-4.5-21B-A3B | 32K | WINT8 | 1 | export XPU_VISIBLE_DEVICES="0" # Specify any card python -m fastdeploy.entrypoints.openai.api_server \ --model PaddlePaddle/ERNIE-4.5-21B-A3B-Paddle \ --port 8188 \ --tensor-parallel-size 1 \ --max-model-len 32768 \ --max-num-seqs 128 \ --quantization "wint8" \ --gpu-memory-utilization 0.9 |
2.3.0 |
| ERNIE-4.5-21B-A3B | 32K | WINT4 | 1 (Recommended) | export XPU_VISIBLE_DEVICES="0" # Specify any card python -m fastdeploy.entrypoints.openai.api_server \ --model PaddlePaddle/ERNIE-4.5-21B-A3B-Paddle \ --port 8188 \ --tensor-parallel-size 1 \ --max-model-len 32768 \ --max-num-seqs 128 \ --quantization "wint4" \ --gpu-memory-utilization 0.9 |
2.3.0 |
| ERNIE-4.5-21B-A3B | 128K | BF16 | 1 | export XPU_VISIBLE_DEVICES="0" # Specify any card python -m fastdeploy.entrypoints.openai.api_server \ --model PaddlePaddle/ERNIE-4.5-21B-A3B-Paddle \ --port 8188 \ --tensor-parallel-size 1 \ --max-model-len 131072 \ --max-num-seqs 128 \ --gpu-memory-utilization 0.9 |
2.3.0 |
| ERNIE-4.5-21B-A3B | 128K | WINT8 | 1 | export XPU_VISIBLE_DEVICES="0" # Specify any card python -m fastdeploy.entrypoints.openai.api_server \ --model PaddlePaddle/ERNIE-4.5-21B-A3B-Paddle \ --port 8188 \ --tensor-parallel-size 1 \ --max-model-len 131072 \ --max-num-seqs 128 \ --quantization "wint8" \ --gpu-memory-utilization 0.9 |
2.3.0 |
| ERNIE-4.5-21B-A3B | 128K | WINT4 | 1 (Recommended) | export XPU_VISIBLE_DEVICES="0" # Specify any card python -m fastdeploy.entrypoints.openai.api_server \ --model PaddlePaddle/ERNIE-4.5-21B-A3B-Paddle \ --port 8188 \ --tensor-parallel-size 1 \ --max-model-len 131072 \ --max-num-seqs 128 \ --quantization "wint4" \ --gpu-memory-utilization 0.9 |
2.3.0 |
| ERNIE-4.5-0.3B | 32K | BF16 | 1 | export XPU_VISIBLE_DEVICES="0" # Specify any card python -m fastdeploy.entrypoints.openai.api_server \ --model PaddlePaddle/ERNIE-4.5-0.3B-Paddle \ --port 8188 \ --tensor-parallel-size 1 \ --max-model-len 32768 \ --max-num-seqs 128 \ --gpu-memory-utilization 0.9 |
2.3.0 |
| ERNIE-4.5-0.3B | 32K | WINT8 | 1 (Recommended) | export XPU_VISIBLE_DEVICES="0" # Specify any card python -m fastdeploy.entrypoints.openai.api_server \ --model PaddlePaddle/ERNIE-4.5-0.3B-Paddle \ --port 8188 \ --tensor-parallel-size 1 \ --max-model-len 32768 \ --max-num-seqs 128 \ --quantization "wint8" \ --gpu-memory-utilization 0.9 |
2.3.0 |
| ERNIE-4.5-0.3B | 128K | BF16 | 1 | export XPU_VISIBLE_DEVICES="0" # Specify any card python -m fastdeploy.entrypoints.openai.api_server \ --model PaddlePaddle/ERNIE-4.5-0.3B-Paddle \ --port 8188 \ --tensor-parallel-size 1 \ --max-model-len 131072 \ --max-num-seqs 128 \ --gpu-memory-utilization 0.9 |
2.3.0 |
| ERNIE-4.5-0.3B | 128K | WINT8 | 1 (Recommended) | export XPU_VISIBLE_DEVICES="0" # Specify any card python -m fastdeploy.entrypoints.openai.api_server \ --model PaddlePaddle/ERNIE-4.5-0.3B-Paddle \ --port 8188 \ --tensor-parallel-size 1 \ --max-model-len 131072 \ --max-num-seqs 128 \ --quantization "wint8" \ --gpu-memory-utilization 0.9 |
2.3.0 |
| ERNIE-4.5-300B-A47B-W4A8C8-TP4 | 32K | W4A8 | 4 | export XPU_VISIBLE_DEVICES="0,1,2,3" or "4,5,6,7" python -m fastdeploy.entrypoints.openai.api_server \ --model PaddlePaddle/ERNIE-4.5-300B-A47B-W4A8C8-TP4-Paddle \ --port 8188 \ --tensor-parallel-size 4 \ --max-model-len 32768 \ --max-num-seqs 64 \ --quantization "W4A8" \ --gpu-memory-utilization 0.9 |
2.3.0 |
| ERNIE-4.5-VL-28B-A3B | 32K | WINT8 | 1 | export XPU_VISIBLE_DEVICES="0" # Specify any card python -m fastdeploy.entrypoints.openai.api_server \ --model PaddlePaddle/ERNIE-4.5-VL-28B-A3B-Paddle \ --port 8188 \ --tensor-parallel-size 1 \ --quantization "wint8" \ --max-model-len 32768 \ --max-num-seqs 10 \ --enable-mm \ --mm-processor-kwargs '{"video_max_frames": 30}' \ --limit-mm-per-prompt '{"image": 10, "video": 3}' \ --reasoning-parser ernie-45-vl |
2.3.0 |
| ERNIE-4.5-VL-424B-A47B | 32K | WINT8 | 8 | export XPU_VISIBLE_DEVICES="0,1,2,3,4,5,6,7" python -m fastdeploy.entrypoints.openai.api_server \ --model PaddlePaddle/ERNIE-4.5-VL-424B-A47B-Paddle \ --port 8188 \ --tensor-parallel-size 8 \ --quantization "wint8" \ --max-model-len 32768 \ --max-num-seqs 8 \ --enable-mm \ --mm-processor-kwargs '{"video_max_frames": 30}' \ --limit-mm-per-prompt '{"image": 10, "video": 3}' \ --reasoning-parser ernie-45-vl \ --gpu-memory-utilization 0.7 |
2.3.0 |
| PaddleOCR-VL-0.9B | 32K | BF16 | 1 | export FD_ENABLE_MAX_PREFILL=1 export XPU_VISIBLE_DEVICES="0" # Specify any card python -m fastdeploy.entrypoints.openai.api_server \ --model PaddlePaddle/PaddleOCR-VL \ --port 8188 \ --metrics-port 8181 \ --engine-worker-queue-port 8182 \ --max-model-len 16384 \ --max-num-batched-tokens 16384 \ --gpu-memory-utilization 0.8 \ --max-num-seqs 256 |
2.3.0 |
| ERNIE-4.5-VL-28B-A3B-Thinking | 128K | WINT8 | 1 | export XPU_VISIBLE_DEVICES="0" # Specify any card python -m fastdeploy.entrypoints.openai.api_server \ --model PaddlePaddle/ERNIE-4.5-VL-28B-A3B-Thinking \ --port 8188 \ --tensor-parallel-size 1 \ --quantization "wint8" \ --max-model-len 131072 \ --max-num-seqs 32 \ --engine-worker-queue-port 8189 \ --metrics-port 8190 \ --cache-queue-port 8191 \ --reasoning-parser ernie-45-vl-thinking \ --tool-call-parser ernie-45-vl-thinking \ --mm-processor-kwargs '{"image_max_pixels": 12845056 }' |
2.3.0 |
Quick start
Deploy online serving based on ERNIE-4.5-300B-A47B-Paddle
Start service
Deploy the ERNIE-4.5-300B-A47B-Paddle model with WINT4 precision and 32K context length on 4 XPUs
export XPU_VISIBLE_DEVICES="0,1,2,3" # Specify which cards to be used
python -m fastdeploy.entrypoints.openai.api_server \
--model PaddlePaddle/ERNIE-4.5-300B-A47B-Paddle \
--port 8188 \
--tensor-parallel-size 4 \
--max-model-len 32768 \
--max-num-seqs 64 \
--quantization "wint4" \
--gpu-memory-utilization 0.9 \
--load-choices "default"
Note: When deploying on 4 XPUs, only two configurations are supported which constrained by hardware limitations such as interconnect capabilities.
export XPU_VISIBLE_DEVICES="0,1,2,3"
or
export XPU_VISIBLE_DEVICES="4,5,6,7"
Refer to Parameters for more options.
All supported models can be found in the Supported Models section above.
Send requests
Send requests using either curl or Python.
curl -X POST "http://0.0.0.0:8188/v1/chat/completions" \
-H "Content-Type: application/json" \
-d '{
"messages": [
{"role": "user", "content": "Where is the capital of China?"}
]
}'
import openai
host = "0.0.0.0"
port = "8188"
client = openai.Client(base_url=f"http://{host}:{port}/v1", api_key="null")
response = client.completions.create(
model="null",
prompt="Where is the capital of China?",
stream=True,
)
for chunk in response:
print(chunk.choices[0].text, end='')
print('\n')
response = client.chat.completions.create(
model="null",
messages=[
{"role": "user", "content": "Where is the capital of China?"},
],
stream=True,
)
for chunk in response:
if chunk.choices[0].delta:
print(chunk.choices[0].delta.content, end='')
print('\n')
For detailed OpenAI protocol specifications, see OpenAI Chat Completion API. Differences from the standard OpenAI protocol are documented in OpenAI Protocol-Compatible API Server.
Deploy online serving based on ERNIE-4.5-VL-28B-A3B-Paddle
Start service
Deploy the ERNIE-4.5-VL-28B-A3B-Paddle model with WINT8 precision and 32K context length on 1 XPU
export XPU_VISIBLE_DEVICES="0" # Specify any card
python -m fastdeploy.entrypoints.openai.api_server \
--model PaddlePaddle/ERNIE-4.5-VL-28B-A3B-Paddle \
--port 8188 \
--tensor-parallel-size 1 \
--quantization "wint8" \
--max-model-len 32768 \
--max-num-seqs 10 \
--enable-mm \
--mm-processor-kwargs '{"video_max_frames": 30}' \
--limit-mm-per-prompt '{"image": 10, "video": 3}' \
--reasoning-parser ernie-45-vl \
--load-choices "default"
Send requests
curl -X POST "http://0.0.0.0:8188/v1/chat/completions" \
-H "Content-Type: application/json" \
-d '{
"messages": [
{"role": "user", "content": [
{"type": "image_url", "image_url": {"url": "https://paddlenlp.bj.bcebos.com/datasets/paddlemix/demo_images/example2.jpg", "detail": "high"}},
{"type": "text", "text": "Please describe the content of the image"}
]}
],
"metadata": {"enable_thinking": false}
}'
import openai
ip = "0.0.0.0"
service_http_port = "8188"
client = openai.Client(base_url=f"http://{ip}:{service_http_port}/v1", api_key="EMPTY_API_KEY")
response = client.chat.completions.create(
model="default",
messages=[
{"role": "user", "content": [
{"type": "image_url", "image_url": {"url": "https://paddlenlp.bj.bcebos.com/datasets/paddlemix/demo_images/example2.jpg", "detail": "high"}},
{"type": "text", "text": "Please describe the content of the image"}
]
},
],
temperature=0.0001,
max_tokens=10000,
stream=True,
top_p=0,
metadata={"enable_thinking": False},
)
def get_str(content_raw):
content_str = str(content_raw) if content_raw is not None else ''
return content_str
for chunk in response:
if chunk.choices[0].delta is not None and chunk.choices[0].delta.role != 'assistant':
reasoning_content = get_str(chunk.choices[0].delta.reasoning_content)
content = get_str(chunk.choices[0].delta.content)
print(reasoning_content + content, end='', flush=True)
print('\n')
Deploy online serving based on PaddleOCR-VL-0.9B
Start service
Deploy the PaddleOCR-VL-0.9B model with BF16 precision and 16K context length on 1 XPU
export FD_ENABLE_MAX_PREFILL=1
export XPU_VISIBLE_DEVICES="0" # Specify any card
python -m fastdeploy.entrypoints.openai.api_server \
--model PaddlePaddle/PaddleOCR-VL \
--port 8188 \
--metrics-port 8181 \
--engine-worker-queue-port 8182 \
--max-model-len 16384 \
--max-num-batched-tokens 16384 \
--gpu-memory-utilization 0.8 \
--max-num-seqs 256
Send requests
curl -X POST "http://0.0.0.0:8188/v1/chat/completions" \
-H "Content-Type: application/json" \
-d '{
"messages": [
{"role": "user", "content": [
{"type": "image_url", "image_url": {"url": "https://paddle-model-ecology.bj.bcebos.com/PPOCRVL/dataset/ocr_v5_eval/handwrite_ch_rec_val/中文手写古籍_000054_crop_32.jpg"}},
{"type": "text", "text": "OCR:"}
]}
],
"metadata": {"enable_thinking": false}
}'
import openai
ip = "0.0.0.0"
service_http_port = "8188"
client = openai.Client(base_url=f"http://{ip}:{service_http_port}/v1", api_key="EMPTY_API_KEY")
response = client.chat.completions.create(
model="default",
messages=[
{"role": "user", "content": [
{"type": "image_url", "image_url": {"url": "https://paddle-model-ecology.bj.bcebos.com/PPOCRVL/dataset/ocr_v5_eval/handwrite_ch_rec_val/中文手写古籍_000054_crop_32.jpg"}},
{"type": "text", "text": "OCR:"}
]
},
],
temperature=0.0001,
max_tokens=4096,
stream=True,
top_p=0,
metadata={"enable_thinking": False},
)
def get_str(content_raw):
content_str = str(content_raw) if content_raw is not None else ''
return content_str
for chunk in response:
if chunk.choices[0].delta is not None and chunk.choices[0].delta.role != 'assistant':
reasoning_content = get_str(chunk.choices[0].delta.reasoning_content)
content = get_str(chunk.choices[0].delta.content)
print(reasoning_content + content, end='', flush=True)
print('\n')
Deploy online serving based on ERNIE-4.5-VL-28B-A3B-Thinking
Start service
Deploy the ERNIE-4.5-VL-28B-A3B-Thinking model with WINT8 precision and 128K context length on 1 XPU
export XPU_VISIBLE_DEVICES="0" # Specify any card
python -m fastdeploy.entrypoints.openai.api_server \
--model PaddlePaddle/ERNIE-4.5-VL-28B-A3B-Thinking \
--port 8188 \
--tensor-parallel-size 1 \
--quantization "wint8" \
--max-model-len 131072 \
--max-num-seqs 32 \
--engine-worker-queue-port 8189 \
--metrics-port 8190 \
--cache-queue-port 8191 \
--reasoning-parser ernie-45-vl-thinking \
--tool-call-parser ernie-45-vl-thinking \
--mm-processor-kwargs '{"image_max_pixels": 12845056 }' \
--load-choices "default_v1"
Send requests
Initiate a service request through the following command
curl -X POST "http://0.0.0.0:8188/v1/chat/completions" \
-H "Content-Type: application/json" \
-d '{
"messages": [
{"role": "user", "content": "Adapt Li Bai's "Silent Night Thoughts" into a modern poem"}
]
}'
When inputting images, initiate a request using the following command
curl -X POST "http://0.0.0.0:8188/v1/chat/completions" \
-H "Content-Type: application/json" \
-d '{
"messages": [
{"role": "user", "content": [
{"type":"image_url", "image_url": {"url":"https://paddlenlp.bj.bcebos.com/datasets/paddlemix/demo_images/example2.jpg"}},
{"type":"text", "text":"Which era does the cultural relic in the picture belong to?"}
]}
]
}'
When inputting a video, initiate a request by following the following command
curl -X POST "http://0.0.0.0:8188/v1/chat/completions" \
-H "Content-Type: application/json" \
-d '{
"messages": [
{"role": "user", "content": [
{"type":"video_url", "video_url": {"url":"https://bj.bcebos.com/v1/paddlenlp/datasets/paddlemix/demo_video/example_video.mp4"}},
{"type":"text", "text":"How many apples are there in the picture"}
]}
]
}'
When the input contains a tool call, initiate the request by following the command
curl -X POST "http://0.0.0.0:8188/v1/chat/completions" \
-H "Content-Type: application/json" \
-d $'{
"tools": [
{
"type": "function",
"function": {
"name": "image_zoom_in_tool",
"description": "Zoom in on a specific region of an image by cropping it based on a bounding box (bbox) and an optional object label.",
"parameters": {
"type": "object",
"properties": {
"bbox_2d": {
"type": "array",
"items": {
"type": "number"
},
"minItems": 4,
"maxItems": 4,
"description": "The bounding box of the region to zoom in, as [x1, y1, x2, y2], where (x1, y1) is the top-left corner and (x2, y2) is the bottom-right corner, and the values of x1, y1, x2, y2 are all normalized to the range 0–1000 based on the original image dimensions."
},
"label": {
"type": "string",
"description": "The name or label of the object in the specified bounding box (optional)."
}
},
"required": [
"bbox_2d"
]
},
"strict": false
}
}
],
"messages": [
{
"role": "user",
"content": [
{
"type": "text",
"text": "Is the old lady on the left side of the empty table behind older couple?"
}
]
}
],
"stream": false
}'
When there are multiple requests and the tool returns results in the historical context, initiate the request by following the command below When there are multiple requests and the tool returns results in the historical context, initiate the request by following the command below
curl -X POST "http://0.0.0.0:8188/v1/chat/completions" \
-H "Content-Type: application/json" \
-d $'{
"messages": [
{
"role": "user",
"content": [
{
"type": "text",
"text": "Get the current weather in Beijing"
}
]
},
{
"role": "assistant",
"tool_calls": [
{
"id": "call_1",
"type": "function",
"function": {
"name": "get_weather",
"arguments": {
"location": "Beijing",
"unit": "c"
}
}
}
],
"content": ""
},
{
"role": "tool",
"content": [
{
"type": "text",
"text": "location: Beijing,temperature: 23,weather: sunny,unit: c"
}
]
}
],
"tools": [
{
"type": "function",
"function": {
"name": "get_weather",
"description": "Determine weather in my location",
"parameters": {
"type": "object",
"properties": {
"location": {
"type": "string",
"description": "The city and state e.g. San Francisco, CA"
},
"unit": {
"type": "string",
"enum": [
"c",
"f"
]
}
},
"additionalProperties": false,
"required": [
"location",
"unit"
]
},
"strict": true
}
}
],
"stream": false
}'