Kunlunxin xpu deployment
Supported Models
| Model Name | Context Length | Quantization | XPUs Required | Deployment Commands | Minimum Version Required |
|---|---|---|---|---|---|
| ERNIE-4.5-300B-A47B | 32K | WINT8 | 8 | export XPU_VISIBLE_DEVICES="0,1,2,3,4,5,6,7" export ENABLE_V1_KVCACHE_SCHEDULER=0 # V1 is not supported python -m fastdeploy.entrypoints.openai.api_server \ --model PaddlePaddle/ERNIE-4.5-300B-A47B-Paddle \ --port 8188 \ --tensor-parallel-size 8 \ --max-model-len 32768 \ --max-num-seqs 64 \ --quantization "wint8" \ --gpu-memory-utilization 0.9 \ --load-choices "default" |
>=2.0.3 |
| ERNIE-4.5-300B-A47B | 32K | WINT4 | 4 (Recommended) | export XPU_VISIBLE_DEVICES="0,1,2,3" or "4,5,6,7" export ENABLE_V1_KVCACHE_SCHEDULER=0 # V1 is not supported python -m fastdeploy.entrypoints.openai.api_server \ --model PaddlePaddle/ERNIE-4.5-300B-A47B-Paddle \ --port 8188 \ --tensor-parallel-size 4 \ --max-model-len 32768 \ --max-num-seqs 64 \ --quantization "wint4" \ --gpu-memory-utilization 0.9 \ --load-choices "default" |
>=2.0.0 |
| ERNIE-4.5-300B-A47B | 32K | WINT4 | 8 | export XPU_VISIBLE_DEVICES="0,1,2,3,4,5,6,7" export ENABLE_V1_KVCACHE_SCHEDULER=0 # V1 is not supported python -m fastdeploy.entrypoints.openai.api_server \ --model PaddlePaddle/ERNIE-4.5-300B-A47B-Paddle \ --port 8188 \ --tensor-parallel-size 8 \ --max-model-len 32768 \ --max-num-seqs 64 \ --quantization "wint4" \ --gpu-memory-utilization 0.95 \ --load-choices "default" |
>=2.0.0 |
| ERNIE-4.5-300B-A47B | 128K | WINT4 | 8 (Recommended) | export XPU_VISIBLE_DEVICES="0,1,2,3,4,5,6,7" export ENABLE_V1_KVCACHE_SCHEDULER=0 # V1 is not supported python -m fastdeploy.entrypoints.openai.api_server \ --model PaddlePaddle/ERNIE-4.5-300B-A47B-Paddle \ --port 8188 \ --tensor-parallel-size 8 \ --max-model-len 131072 \ --max-num-seqs 64 \ --quantization "wint4" \ --gpu-memory-utilization 0.9 \ --load-choices "default" |
>=2.0.0 |
| ERNIE-4.5-21B-A3B | 32K | BF16 | 1 | export XPU_VISIBLE_DEVICES="0" # Specify any card export ENABLE_V1_KVCACHE_SCHEDULER=0 # V1 is not supported python -m fastdeploy.entrypoints.openai.api_server \ --model PaddlePaddle/ERNIE-4.5-21B-A3B-Paddle \ --port 8188 \ --tensor-parallel-size 1 \ --max-model-len 32768 \ --max-num-seqs 128 \ --gpu-memory-utilization 0.9 \ --load-choices "default" |
>=2.1.0 |
| ERNIE-4.5-21B-A3B | 32K | WINT8 | 1 | export XPU_VISIBLE_DEVICES="0" # Specify any card export ENABLE_V1_KVCACHE_SCHEDULER=0 # V1 is not supported python -m fastdeploy.entrypoints.openai.api_server \ --model PaddlePaddle/ERNIE-4.5-21B-A3B-Paddle \ --port 8188 \ --tensor-parallel-size 1 \ --max-model-len 32768 \ --max-num-seqs 128 \ --quantization "wint8" \ --gpu-memory-utilization 0.9 \ --load-choices "default" |
>=2.1.0 |
| ERNIE-4.5-21B-A3B | 32K | WINT4 | 1 | export XPU_VISIBLE_DEVICES="0" # Specify any card export ENABLE_V1_KVCACHE_SCHEDULER=0 # V1 is not supported python -m fastdeploy.entrypoints.openai.api_server \ --model PaddlePaddle/ERNIE-4.5-21B-A3B-Paddle \ --port 8188 \ --tensor-parallel-size 1 \ --max-model-len 32768 \ --max-num-seqs 128 \ --quantization "wint4" \ --gpu-memory-utilization 0.9 \ --load-choices "default" |
>=2.1.0 |
| ERNIE-4.5-21B-A3B | 128K | BF16 | 1 | export XPU_VISIBLE_DEVICES="0" # Specify any card export ENABLE_V1_KVCACHE_SCHEDULER=0 # V1 is not supported python -m fastdeploy.entrypoints.openai.api_server \ --model PaddlePaddle/ERNIE-4.5-21B-A3B-Paddle \ --port 8188 \ --tensor-parallel-size 1 \ --max-model-len 131072 \ --max-num-seqs 128 \ --gpu-memory-utilization 0.9 \ --load-choices "default" |
>=2.1.0 |
| ERNIE-4.5-21B-A3B | 128K | WINT8 | 1 | export XPU_VISIBLE_DEVICES="0" # Specify any card export ENABLE_V1_KVCACHE_SCHEDULER=0 # V1 is not supported python -m fastdeploy.entrypoints.openai.api_server \ --model PaddlePaddle/ERNIE-4.5-21B-A3B-Paddle \ --port 8188 \ --tensor-parallel-size 1 \ --max-model-len 131072 \ --max-num-seqs 128 \ --quantization "wint8" \ --gpu-memory-utilization 0.9 \ --load-choices "default" |
>=2.1.0 |
| ERNIE-4.5-21B-A3B | 128K | WINT4 | 1 | export XPU_VISIBLE_DEVICES="0" # Specify any card export ENABLE_V1_KVCACHE_SCHEDULER=0 # V1 is not supported python -m fastdeploy.entrypoints.openai.api_server \ --model PaddlePaddle/ERNIE-4.5-21B-A3B-Paddle \ --port 8188 \ --tensor-parallel-size 1 \ --max-model-len 131072 \ --max-num-seqs 128 \ --quantization "wint4" \ --gpu-memory-utilization 0.9 \ --load-choices "default" |
>=2.1.0 |
| ERNIE-4.5-0.3B | 32K | BF16 | 1 | export XPU_VISIBLE_DEVICES="0" # Specify any card export ENABLE_V1_KVCACHE_SCHEDULER=0 # V1 is not supported python -m fastdeploy.entrypoints.openai.api_server \ --model PaddlePaddle/ERNIE-4.5-0.3B-Paddle \ --port 8188 \ --tensor-parallel-size 1 \ --max-model-len 32768 \ --max-num-seqs 128 \ --gpu-memory-utilization 0.9 \ --load-choices "default" |
>=2.0.3 |
| ERNIE-4.5-0.3B | 32K | WINT8 | 1 | export XPU_VISIBLE_DEVICES="0" # Specify any card export ENABLE_V1_KVCACHE_SCHEDULER=0 # V1 is not supported python -m fastdeploy.entrypoints.openai.api_server \ --model PaddlePaddle/ERNIE-4.5-0.3B-Paddle \ --port 8188 \ --tensor-parallel-size 1 \ --max-model-len 32768 \ --max-num-seqs 128 \ --quantization "wint8" \ --gpu-memory-utilization 0.9 \ --load-choices "default" |
>=2.0.3 |
| ERNIE-4.5-0.3B | 128K | BF16 | 1 | export XPU_VISIBLE_DEVICES="0" # Specify any card export ENABLE_V1_KVCACHE_SCHEDULER=0 # V1 is not supported python -m fastdeploy.entrypoints.openai.api_server \ --model PaddlePaddle/ERNIE-4.5-0.3B-Paddle \ --port 8188 \ --tensor-parallel-size 1 \ --max-model-len 131072 \ --max-num-seqs 128 \ --gpu-memory-utilization 0.9 \ --load-choices "default" |
>=2.0.3 |
| ERNIE-4.5-0.3B | 128K | WINT8 | 1 | export XPU_VISIBLE_DEVICES="0" # Specify any card export ENABLE_V1_KVCACHE_SCHEDULER=0 # V1 is not supported python -m fastdeploy.entrypoints.openai.api_server \ --model PaddlePaddle/ERNIE-4.5-0.3B-Paddle \ --port 8188 \ --tensor-parallel-size 1 \ --max-model-len 131072 \ --max-num-seqs 128 \ --quantization "wint8" \ --gpu-memory-utilization 0.9 \ --load-choices "default" |
>=2.0.3 |
| ERNIE-4.5-VL-28B-A3B | 32K | WINT8 | 1 | export XPU_VISIBLE_DEVICES="0" # Specify any card python -m fastdeploy.entrypoints.openai.api_server \ --model PaddlePaddle/ERNIE-4.5-VL-28B-A3B-Paddle \ --port 8188 \ --tensor-parallel-size 1 \ --quantization "wint8" \ --max-model-len 32768 \ --max-num-seqs 10 \ --enable-mm \ --mm-processor-kwargs '{"video_max_frames": 30}' \ --limit-mm-per-prompt '{"image": 10, "video": 3}' \ --reasoning-parser ernie-45-vl |
>=2.3.0 |
| ERNIE-4.5-VL-424B-A47B | 32K | WINT8 | 8 | export XPU_VISIBLE_DEVICES="0,1,2,3,4,5,6,7" python -m fastdeploy.entrypoints.openai.api_server \ --model PaddlePaddle/ERNIE-4.5-VL-424B-A47B-Paddle \ --port 8188 \ --tensor-parallel-size 8 \ --quantization "wint8" \ --max-model-len 32768 \ --max-num-seqs 10 \ --enable-mm \ --mm-processor-kwargs '{"video_max_frames": 30}' \ --limit-mm-per-prompt '{"image": 10, "video": 3}' \ --reasoning-parser ernie-45-vl |
>=2.3.0 |
Quick start
Deploy online serving based on ERNIE-4.5-300B-A47B-Paddle
Start service
Deploy the ERNIE-4.5-300B-A47B-Paddle model with WINT4 precision and 32K context length on 4 XPUs
export XPU_VISIBLE_DEVICES="0,1,2,3" # Specify which cards to be used
export ENABLE_V1_KVCACHE_SCHEDULER=0 # V1 is not supported
python -m fastdeploy.entrypoints.openai.api_server \
--model PaddlePaddle/ERNIE-4.5-300B-A47B-Paddle \
--port 8188 \
--tensor-parallel-size 4 \
--max-model-len 32768 \
--max-num-seqs 64 \
--quantization "wint4" \
--gpu-memory-utilization 0.9 \
--load-choices "default"
Note: When deploying on 4 XPUs, only two configurations are supported which constrained by hardware limitations such as interconnect capabilities.
export XPU_VISIBLE_DEVICES="0,1,2,3"
or
export XPU_VISIBLE_DEVICES="4,5,6,7"
Refer to Parameters for more options.
All supported models can be found in the Supported Models section above.
Send requests
Send requests using either curl or Python.
curl -X POST "http://0.0.0.0:8188/v1/chat/completions" \
-H "Content-Type: application/json" \
-d '{
"messages": [
{"role": "user", "content": "Where is the capital of China?"}
]
}'
import openai
host = "0.0.0.0"
port = "8188"
client = openai.Client(base_url=f"http://{host}:{port}/v1", api_key="null")
response = client.completions.create(
model="null",
prompt="Where is the capital of China?",
stream=True,
)
for chunk in response:
print(chunk.choices[0].text, end='')
print('\n')
response = client.chat.completions.create(
model="null",
messages=[
{"role": "user", "content": "Where is the capital of China?"},
],
stream=True,
)
for chunk in response:
if chunk.choices[0].delta:
print(chunk.choices[0].delta.content, end='')
print('\n')
For detailed OpenAI protocol specifications, see OpenAI Chat Completion API. Differences from the standard OpenAI protocol are documented in OpenAI Protocol-Compatible API Server.
Deploy online serving based on ERNIE-4.5-VL-28B-A3B-Paddle
Start service
Deploy the ERNIE-4.5-VL-28B-A3B-Paddle model with WINT8 precision and 32K context length on 1 XPU
export XPU_VISIBLE_DEVICES="0" # Specify any card
python -m fastdeploy.entrypoints.openai.api_server \
--model PaddlePaddle/ERNIE-4.5-VL-28B-A3B-Paddle \
--port 8188 \
--tensor-parallel-size 1 \
--quantization "wint8" \
--max-model-len 32768 \
--max-num-seqs 10 \
--enable-mm \
--mm-processor-kwargs '{"video_max_frames": 30}' \
--limit-mm-per-prompt '{"image": 10, "video": 3}' \
--reasoning-parser ernie-45-vl
Send requests
curl -X POST "http://0.0.0.0:8188/v1/chat/completions" \
-H "Content-Type: application/json" \
-d '{
"messages": [
{"role": "user", "content": [
{"type": "image_url", "image_url": {"url": "https://paddlenlp.bj.bcebos.com/datasets/paddlemix/demo_images/example2.jpg", "detail": "high"}},
{"type": "text", "text": "请描述图片内容"}
]}
],
"metadata": {"enable_thinking": false}
}'
import openai
ip = "0.0.0.0"
service_http_port = "8188"
client = openai.Client(base_url=f"http://{ip}:{service_http_port}/v1", api_key="EMPTY_API_KEY")
response = client.chat.completions.create(
model="default",
messages=[
{"role": "user", "content": [
{"type": "image_url", "image_url": {"url": "https://paddlenlp.bj.bcebos.com/datasets/paddlemix/demo_images/example2.jpg", "detail": "high"}},
{"type": "text", "text": "请描述图片内容"}
]
},
],
temperature=0.0001,
max_tokens=10000,
stream=True,
top_p=0,
metadata={"enable_thinking": False},
)
def get_str(content_raw):
content_str = str(content_raw) if content_raw is not None else ''
return content_str
for chunk in response:
if chunk.choices[0].delta is not None and chunk.choices[0].delta.role != 'assistant':
reasoning_content = get_str(chunk.choices[0].delta.reasoning_content)
content = get_str(chunk.choices[0].delta.content)
is_reason = "[answer]" if reasoning_content == '' else "[think]"
is_reason = ""
print(reasoning_content+content+is_reason, end='', flush=True)
print('\n')