Skip to content

Kunlunxin xpu deployment

简体中文

Supported Models

Model Name Context Length Quantization XPUs Required Deployment Commands Applicable Version
ERNIE-4.5-300B-A47B 32K WINT8 8 export XPU_VISIBLE_DEVICES="0,1,2,3,4,5,6,7"
python -m fastdeploy.entrypoints.openai.api_server \
--model PaddlePaddle/ERNIE-4.5-300B-A47B-Paddle \
--port 8188 \
--tensor-parallel-size 8 \
--max-model-len 32768 \
--max-num-seqs 64 \
--quantization "wint8" \
--gpu-memory-utilization 0.9
2.3.0
ERNIE-4.5-300B-A47B 32K WINT4 4 (Recommended) export XPU_VISIBLE_DEVICES="0,1,2,3" or "4,5,6,7"
python -m fastdeploy.entrypoints.openai.api_server \
--model PaddlePaddle/ERNIE-4.5-300B-A47B-Paddle \
--port 8188 \
--tensor-parallel-size 4 \
--max-model-len 32768 \
--max-num-seqs 64 \
--quantization "wint4" \
--gpu-memory-utilization 0.9
2.3.0
ERNIE-4.5-300B-A47B 32K WINT4 8 export XPU_VISIBLE_DEVICES="0,1,2,3,4,5,6,7"
python -m fastdeploy.entrypoints.openai.api_server \
--model PaddlePaddle/ERNIE-4.5-300B-A47B-Paddle \
--port 8188 \
--tensor-parallel-size 8 \
--max-model-len 32768 \
--max-num-seqs 64 \
--quantization "wint4" \
--gpu-memory-utilization 0.95
2.3.0
ERNIE-4.5-300B-A47B 128K WINT4 8 export XPU_VISIBLE_DEVICES="0,1,2,3,4,5,6,7"
python -m fastdeploy.entrypoints.openai.api_server \
--model PaddlePaddle/ERNIE-4.5-300B-A47B-Paddle \
--port 8188 \
--tensor-parallel-size 8 \
--max-model-len 131072 \
--max-num-seqs 64 \
--quantization "wint4" \
--gpu-memory-utilization 0.9
2.3.0
ERNIE-4.5-21B-A3B 32K BF16 1 export XPU_VISIBLE_DEVICES="0" # Specify any card
python -m fastdeploy.entrypoints.openai.api_server \
--model PaddlePaddle/ERNIE-4.5-21B-A3B-Paddle \
--port 8188 \
--tensor-parallel-size 1 \
--max-model-len 32768 \
--max-num-seqs 128 \
--gpu-memory-utilization 0.9
2.3.0
ERNIE-4.5-21B-A3B 32K WINT8 1 export XPU_VISIBLE_DEVICES="0" # Specify any card
python -m fastdeploy.entrypoints.openai.api_server \
--model PaddlePaddle/ERNIE-4.5-21B-A3B-Paddle \
--port 8188 \
--tensor-parallel-size 1 \
--max-model-len 32768 \
--max-num-seqs 128 \
--quantization "wint8" \
--gpu-memory-utilization 0.9
2.3.0
ERNIE-4.5-21B-A3B 32K WINT4 1 (Recommended) export XPU_VISIBLE_DEVICES="0" # Specify any card
python -m fastdeploy.entrypoints.openai.api_server \
--model PaddlePaddle/ERNIE-4.5-21B-A3B-Paddle \
--port 8188 \
--tensor-parallel-size 1 \
--max-model-len 32768 \
--max-num-seqs 128 \
--quantization "wint4" \
--gpu-memory-utilization 0.9
2.3.0
ERNIE-4.5-21B-A3B 128K BF16 1 export XPU_VISIBLE_DEVICES="0" # Specify any card
python -m fastdeploy.entrypoints.openai.api_server \
--model PaddlePaddle/ERNIE-4.5-21B-A3B-Paddle \
--port 8188 \
--tensor-parallel-size 1 \
--max-model-len 131072 \
--max-num-seqs 128 \
--gpu-memory-utilization 0.9
2.3.0
ERNIE-4.5-21B-A3B 128K WINT8 1 export XPU_VISIBLE_DEVICES="0" # Specify any card
python -m fastdeploy.entrypoints.openai.api_server \
--model PaddlePaddle/ERNIE-4.5-21B-A3B-Paddle \
--port 8188 \
--tensor-parallel-size 1 \
--max-model-len 131072 \
--max-num-seqs 128 \
--quantization "wint8" \
--gpu-memory-utilization 0.9
2.3.0
ERNIE-4.5-21B-A3B 128K WINT4 1 (Recommended) export XPU_VISIBLE_DEVICES="0" # Specify any card
python -m fastdeploy.entrypoints.openai.api_server \
--model PaddlePaddle/ERNIE-4.5-21B-A3B-Paddle \
--port 8188 \
--tensor-parallel-size 1 \
--max-model-len 131072 \
--max-num-seqs 128 \
--quantization "wint4" \
--gpu-memory-utilization 0.9
2.3.0
ERNIE-4.5-0.3B 32K BF16 1 export XPU_VISIBLE_DEVICES="0" # Specify any card
python -m fastdeploy.entrypoints.openai.api_server \
--model PaddlePaddle/ERNIE-4.5-0.3B-Paddle \
--port 8188 \
--tensor-parallel-size 1 \
--max-model-len 32768 \
--max-num-seqs 128 \
--gpu-memory-utilization 0.9
2.3.0
ERNIE-4.5-0.3B 32K WINT8 1 (Recommended) export XPU_VISIBLE_DEVICES="0" # Specify any card
python -m fastdeploy.entrypoints.openai.api_server \
--model PaddlePaddle/ERNIE-4.5-0.3B-Paddle \
--port 8188 \
--tensor-parallel-size 1 \
--max-model-len 32768 \
--max-num-seqs 128 \
--quantization "wint8" \
--gpu-memory-utilization 0.9
2.3.0
ERNIE-4.5-0.3B 128K BF16 1 export XPU_VISIBLE_DEVICES="0" # Specify any card
python -m fastdeploy.entrypoints.openai.api_server \
--model PaddlePaddle/ERNIE-4.5-0.3B-Paddle \
--port 8188 \
--tensor-parallel-size 1 \
--max-model-len 131072 \
--max-num-seqs 128 \
--gpu-memory-utilization 0.9
2.3.0
ERNIE-4.5-0.3B 128K WINT8 1 (Recommended) export XPU_VISIBLE_DEVICES="0" # Specify any card
python -m fastdeploy.entrypoints.openai.api_server \
--model PaddlePaddle/ERNIE-4.5-0.3B-Paddle \
--port 8188 \
--tensor-parallel-size 1 \
--max-model-len 131072 \
--max-num-seqs 128 \
--quantization "wint8" \
--gpu-memory-utilization 0.9
2.3.0
ERNIE-4.5-300B-A47B-W4A8C8-TP4 32K W4A8 4 export XPU_VISIBLE_DEVICES="0,1,2,3" or "4,5,6,7"
python -m fastdeploy.entrypoints.openai.api_server \
--model PaddlePaddle/ERNIE-4.5-300B-A47B-W4A8C8-TP4-Paddle \
--port 8188 \
--tensor-parallel-size 4 \
--max-model-len 32768 \
--max-num-seqs 64 \
--quantization "W4A8" \
--gpu-memory-utilization 0.9
2.3.0
ERNIE-4.5-VL-28B-A3B 32K WINT8 1 export XPU_VISIBLE_DEVICES="0" # Specify any card
python -m fastdeploy.entrypoints.openai.api_server \
--model PaddlePaddle/ERNIE-4.5-VL-28B-A3B-Paddle \
--port 8188 \
--tensor-parallel-size 1 \
--quantization "wint8" \
--max-model-len 32768 \
--max-num-seqs 10 \
--enable-mm \
--mm-processor-kwargs '{"video_max_frames": 30}' \
--limit-mm-per-prompt '{"image": 10, "video": 3}' \
--reasoning-parser ernie-45-vl
2.3.0
ERNIE-4.5-VL-424B-A47B 32K WINT8 8 export XPU_VISIBLE_DEVICES="0,1,2,3,4,5,6,7"
python -m fastdeploy.entrypoints.openai.api_server \
--model PaddlePaddle/ERNIE-4.5-VL-424B-A47B-Paddle \
--port 8188 \
--tensor-parallel-size 8 \
--quantization "wint8" \
--max-model-len 32768 \
--max-num-seqs 8 \
--enable-mm \
--mm-processor-kwargs '{"video_max_frames": 30}' \
--limit-mm-per-prompt '{"image": 10, "video": 3}' \
--reasoning-parser ernie-45-vl \
--gpu-memory-utilization 0.7
2.3.0
PaddleOCR-VL-0.9B 32K BF16 1 export FD_ENABLE_MAX_PREFILL=1
export XPU_VISIBLE_DEVICES="0" # Specify any card
python -m fastdeploy.entrypoints.openai.api_server \
--model PaddlePaddle/PaddleOCR-VL \
--port 8188 \
--metrics-port 8181 \
--engine-worker-queue-port 8182 \
--max-model-len 16384 \
--max-num-batched-tokens 16384 \
--gpu-memory-utilization 0.8 \
--max-num-seqs 256
2.3.0
ERNIE-4.5-VL-28B-A3B-Thinking 128K WINT8 1 export XPU_VISIBLE_DEVICES="0" # Specify any card
python -m fastdeploy.entrypoints.openai.api_server \
--model PaddlePaddle/ERNIE-4.5-VL-28B-A3B-Thinking \
--port 8188 \
--tensor-parallel-size 1 \
--quantization "wint8" \
--max-model-len 131072 \
--max-num-seqs 32 \
--engine-worker-queue-port 8189 \
--metrics-port 8190 \
--cache-queue-port 8191 \
--reasoning-parser ernie-45-vl-thinking \
--tool-call-parser ernie-45-vl-thinking \
--mm-processor-kwargs '{"image_max_pixels": 12845056 }'
2.3.0

Quick start

Deploy online serving based on ERNIE-4.5-300B-A47B-Paddle

Start service

Deploy the ERNIE-4.5-300B-A47B-Paddle model with WINT4 precision and 32K context length on 4 XPUs

export XPU_VISIBLE_DEVICES="0,1,2,3" # Specify which cards to be used
python -m fastdeploy.entrypoints.openai.api_server \
    --model PaddlePaddle/ERNIE-4.5-300B-A47B-Paddle \
    --port 8188 \
    --tensor-parallel-size 4 \
    --max-model-len 32768 \
    --max-num-seqs 64 \
    --quantization "wint4" \
    --gpu-memory-utilization 0.9 \
    --load-choices "default"

Note: When deploying on 4 XPUs, only two configurations are supported which constrained by hardware limitations such as interconnect capabilities. export XPU_VISIBLE_DEVICES="0,1,2,3" or export XPU_VISIBLE_DEVICES="4,5,6,7"

Refer to Parameters for more options.

All supported models can be found in the Supported Models section above.

Send requests

Send requests using either curl or Python.

curl -X POST "http://0.0.0.0:8188/v1/chat/completions" \
-H "Content-Type: application/json" \
-d '{
  "messages": [
    {"role": "user", "content": "Where is the capital of China?"}
  ]
}'
import openai
host = "0.0.0.0"
port = "8188"
client = openai.Client(base_url=f"http://{host}:{port}/v1", api_key="null")

response = client.completions.create(
    model="null",
    prompt="Where is the capital of China?",
    stream=True,
)
for chunk in response:
    print(chunk.choices[0].text, end='')
print('\n')

response = client.chat.completions.create(
    model="null",
    messages=[
        {"role": "user", "content": "Where is the capital of China?"},
    ],
    stream=True,
)
for chunk in response:
    if chunk.choices[0].delta:
        print(chunk.choices[0].delta.content, end='')
print('\n')

For detailed OpenAI protocol specifications, see OpenAI Chat Completion API. Differences from the standard OpenAI protocol are documented in OpenAI Protocol-Compatible API Server.

Deploy online serving based on ERNIE-4.5-VL-28B-A3B-Paddle

Start service

Deploy the ERNIE-4.5-VL-28B-A3B-Paddle model with WINT8 precision and 32K context length on 1 XPU

export XPU_VISIBLE_DEVICES="0" # Specify any card
python -m fastdeploy.entrypoints.openai.api_server \
    --model PaddlePaddle/ERNIE-4.5-VL-28B-A3B-Paddle \
    --port 8188  \
    --tensor-parallel-size 1 \
    --quantization "wint8" \
    --max-model-len 32768 \
    --max-num-seqs 10 \
    --enable-mm \
    --mm-processor-kwargs '{"video_max_frames": 30}' \
    --limit-mm-per-prompt '{"image": 10, "video": 3}' \
    --reasoning-parser ernie-45-vl \
    --load-choices "default"

Send requests

curl -X POST "http://0.0.0.0:8188/v1/chat/completions" \
-H "Content-Type: application/json" \
-d '{
  "messages": [
    {"role": "user", "content": [
              {"type": "image_url", "image_url": {"url": "https://paddlenlp.bj.bcebos.com/datasets/paddlemix/demo_images/example2.jpg", "detail": "high"}},
              {"type": "text", "text": "Please describe the content of the image"}
            ]}
    ],
    "metadata": {"enable_thinking": false}
}'
import openai

ip = "0.0.0.0"
service_http_port = "8188"
client = openai.Client(base_url=f"http://{ip}:{service_http_port}/v1", api_key="EMPTY_API_KEY")

response = client.chat.completions.create(
    model="default",
    messages=[
        {"role": "user", "content": [
              {"type": "image_url", "image_url": {"url": "https://paddlenlp.bj.bcebos.com/datasets/paddlemix/demo_images/example2.jpg", "detail": "high"}},
              {"type": "text", "text": "Please describe the content of the image"}
            ]
        },
    ],
    temperature=0.0001,
    max_tokens=10000,
    stream=True,
    top_p=0,
    metadata={"enable_thinking": False},
)

def get_str(content_raw):
    content_str = str(content_raw) if content_raw is not None else ''
    return content_str

for chunk in response:
    if chunk.choices[0].delta is not None and chunk.choices[0].delta.role != 'assistant':
        reasoning_content = get_str(chunk.choices[0].delta.reasoning_content)
        content = get_str(chunk.choices[0].delta.content)
        print(reasoning_content + content, end='', flush=True)
print('\n')

Deploy online serving based on PaddleOCR-VL-0.9B

Start service

Deploy the PaddleOCR-VL-0.9B model with BF16 precision and 16K context length on 1 XPU

export FD_ENABLE_MAX_PREFILL=1
export XPU_VISIBLE_DEVICES="0" # Specify any card
python -m fastdeploy.entrypoints.openai.api_server \
   --model PaddlePaddle/PaddleOCR-VL \
   --port 8188 \
   --metrics-port 8181 \
   --engine-worker-queue-port 8182 \
   --max-model-len 16384 \
   --max-num-batched-tokens 16384 \
   --gpu-memory-utilization 0.8 \
   --max-num-seqs 256

Send requests

curl -X POST "http://0.0.0.0:8188/v1/chat/completions" \
-H "Content-Type: application/json" \
-d '{
  "messages": [
    {"role": "user", "content": [
              {"type": "image_url", "image_url": {"url": "https://paddle-model-ecology.bj.bcebos.com/PPOCRVL/dataset/ocr_v5_eval/handwrite_ch_rec_val/中文手写古籍_000054_crop_32.jpg"}},
              {"type": "text", "text": "OCR:"}
            ]}
    ],
    "metadata": {"enable_thinking": false}
}'
import openai

ip = "0.0.0.0"
service_http_port = "8188"
client = openai.Client(base_url=f"http://{ip}:{service_http_port}/v1", api_key="EMPTY_API_KEY")

response = client.chat.completions.create(
    model="default",
    messages=[
        {"role": "user", "content": [
              {"type": "image_url", "image_url": {"url": "https://paddle-model-ecology.bj.bcebos.com/PPOCRVL/dataset/ocr_v5_eval/handwrite_ch_rec_val/中文手写古籍_000054_crop_32.jpg"}},
              {"type": "text", "text": "OCR:"}
            ]
        },
    ],
    temperature=0.0001,
    max_tokens=4096,
    stream=True,
    top_p=0,
    metadata={"enable_thinking": False},
)

def get_str(content_raw):
    content_str = str(content_raw) if content_raw is not None else ''
    return content_str

for chunk in response:
    if chunk.choices[0].delta is not None and chunk.choices[0].delta.role != 'assistant':
        reasoning_content = get_str(chunk.choices[0].delta.reasoning_content)
        content = get_str(chunk.choices[0].delta.content)
        print(reasoning_content + content, end='', flush=True)
print('\n')

Deploy online serving based on ERNIE-4.5-VL-28B-A3B-Thinking

Start service

Deploy the ERNIE-4.5-VL-28B-A3B-Thinking model with WINT8 precision and 128K context length on 1 XPU

export XPU_VISIBLE_DEVICES="0" # Specify any card
python -m fastdeploy.entrypoints.openai.api_server \
    --model PaddlePaddle/ERNIE-4.5-VL-28B-A3B-Thinking \
    --port 8188 \
    --tensor-parallel-size 1 \
    --quantization "wint8" \
    --max-model-len 131072 \
    --max-num-seqs 32 \
    --engine-worker-queue-port 8189 \
    --metrics-port 8190 \
    --cache-queue-port 8191 \
    --reasoning-parser ernie-45-vl-thinking \
    --tool-call-parser ernie-45-vl-thinking \
    --mm-processor-kwargs '{"image_max_pixels": 12845056 }' \
    --load-choices "default_v1"

Send requests

Initiate a service request through the following command

curl -X POST "http://0.0.0.0:8188/v1/chat/completions" \
-H "Content-Type: application/json" \
-d '{
  "messages": [
    {"role": "user", "content": "Adapt Li Bai's "Silent Night Thoughts" into a modern poem"}
  ]
}'

When inputting images, initiate a request using the following command

curl -X POST "http://0.0.0.0:8188/v1/chat/completions" \
-H "Content-Type: application/json" \
-d '{
  "messages": [
    {"role": "user", "content": [
      {"type":"image_url", "image_url": {"url":"https://paddlenlp.bj.bcebos.com/datasets/paddlemix/demo_images/example2.jpg"}},
      {"type":"text", "text":"Which era does the cultural relic in the picture belong to?"}
    ]}
  ]
}'

When inputting a video, initiate a request by following the following command

curl -X POST "http://0.0.0.0:8188/v1/chat/completions" \
-H "Content-Type: application/json" \
-d '{
  "messages": [
    {"role": "user", "content": [
      {"type":"video_url", "video_url": {"url":"https://bj.bcebos.com/v1/paddlenlp/datasets/paddlemix/demo_video/example_video.mp4"}},
      {"type":"text", "text":"How many apples are there in the picture"}
    ]}
  ]
}'

When the input contains a tool call, initiate the request by following the command

curl -X POST "http://0.0.0.0:8188/v1/chat/completions" \
-H "Content-Type: application/json" \
-d $'{
    "tools": [
        {
            "type": "function",
            "function": {
                "name": "image_zoom_in_tool",
                "description": "Zoom in on a specific region of an image by cropping it based on a bounding box (bbox) and an optional object label.",
                "parameters": {
                    "type": "object",
                    "properties": {
                        "bbox_2d": {
                            "type": "array",
                            "items": {
                                "type": "number"
                            },
                            "minItems": 4,
                            "maxItems": 4,
                            "description": "The bounding box of the region to zoom in, as [x1, y1, x2, y2], where (x1, y1) is the top-left corner and (x2, y2) is the bottom-right corner, and the values of x1, y1, x2, y2 are all normalized to the range 0–1000 based on the original image dimensions."
                        },
                        "label": {
                            "type": "string",
                            "description": "The name or label of the object in the specified bounding box (optional)."
                        }
                    },
                    "required": [
                        "bbox_2d"
                    ]
                },
                "strict": false
            }
        }
    ],
    "messages": [
        {
            "role": "user",
            "content": [
                {
                    "type": "text",
                    "text": "Is the old lady on the left side of the empty table behind older couple?"
                }
            ]
        }
    ],
    "stream": false
}'

When there are multiple requests and the tool returns results in the historical context, initiate the request by following the command below When there are multiple requests and the tool returns results in the historical context, initiate the request by following the command below

curl -X POST "http://0.0.0.0:8188/v1/chat/completions" \
-H "Content-Type: application/json" \
-d $'{
    "messages": [
        {
            "role": "user",
            "content": [
                {
                    "type": "text",
                    "text": "Get the current weather in Beijing"
                }
            ]
        },
        {
            "role": "assistant",
            "tool_calls": [
                {
                    "id": "call_1",
                    "type": "function",
                    "function": {
                        "name": "get_weather",
                        "arguments": {
                            "location": "Beijing",
                            "unit": "c"
                        }
                    }
                }
            ],
            "content": ""
        },
        {
            "role": "tool",
            "content": [
                {
                    "type": "text",
                    "text": "location: Beijing,temperature: 23,weather: sunny,unit: c"
                }
            ]
        }
    ],
    "tools": [
        {
            "type": "function",
            "function": {
                "name": "get_weather",
                "description": "Determine weather in my location",
                "parameters": {
                    "type": "object",
                    "properties": {
                        "location": {
                            "type": "string",
                            "description": "The city and state e.g. San Francisco, CA"
                        },
                        "unit": {
                            "type": "string",
                            "enum": [
                                "c",
                                "f"
                            ]
                        }
                    },
                    "additionalProperties": false,
                    "required": [
                        "location",
                        "unit"
                    ]
                },
                "strict": true
            }
        }
    ],
    "stream": false
}'