Supported Models
FastDeploy currently supports the following models, which can be downloaded automatically during FastDeploy deployment.Specify the model
parameter as the model name in the table below to automatically download model weights (all supports resumable downloads). The following three download sources are supported:
When using automatic download, the default download source is AIStudio. Users can modify the default download source by setting the FD_MODEL_SOURCE
environment variable, which can be set to “AISTUDIO”, ‘MODELSCOPE’ or “HUGGINGFACE”. The default download path is ~/
(i.e., the user's home directory). Users can modify the default download path by setting the FD_MODEL_CACHE
environment variable, e.g.:
export FD_MODEL_SOURCE=AISTUDIO # "AISTUDIO", "MODELSCOPE" or "HUGGINGFACE"
export FD_MODEL_CACHE=/ssd1/download_models
⭐ Note: Models marked with an asterisk can directly use HuggingFace Torch weights and support FP8/WINT8/WINT4 as well as BF16. When running inference, you need to enable
--load_choices "default_v1"
.Example launch Command using baidu/ERNIE-4.5-21B-A3B-PT:
python -m fastdeploy.entrypoints.openai.api_server \
--model baidu/ERNIE-4.5-0.3B-PT \
--port 8180 \
--metrics-port 8181 \
--engine-worker-queue-port 8182 \
--max-model-len 32768 \
--max-num-seqs 32 \
--load_choices "default_v1"
Large Language Models
These models accept text input.
Models | DataType | Example HF Model |
---|---|---|
⭐ERNIE | BF16\WINT4\WINT8\W4A8C8\WINT2\FP8 | baidu/ERNIE-4.5-VL-424B-A47B-Paddle; baidu/ERNIE-4.5-300B-A47B-Paddle quick start best practice; baidu/ERNIE-4.5-300B-A47B-2Bits-Paddle; baidu/ERNIE-4.5-300B-A47B-W4A8C8-TP4-Paddle; baidu/ERNIE-4.5-300B-A47B-FP8-Paddle; baidu/ERNIE-4.5-300B-A47B-Base-Paddle; baidu/ERNIE-4.5-21B-A3B-Paddle; baidu/ERNIE-4.5-21B-A3B-Base-Paddle; baidu/ERNIE-4.5-21B-A3B-Thinking; baidu/ERNIE-4.5-0.3B-Paddle quick start best practice; baidu/ERNIE-4.5-0.3B-Base-Paddle, etc. |
⭐QWEN3-MOE | BF16/WINT4/WINT8/FP8 | Qwen/Qwen3-235B-A22B; Qwen/Qwen3-30B-A3B, etc. |
⭐QWEN3 | BF16/WINT8/FP8 | Qwen/qwen3-32B; Qwen/qwen3-14B; Qwen/qwen3-8B; Qwen/qwen3-4B; Qwen/qwen3-1.7B; Qwen/qwen3-0.6B, etc. |
⭐QWEN2.5 | BF16/WINT8/FP8 | Qwen/qwen2.5-72B; Qwen/qwen2.5-32B; Qwen/qwen2.5-14B; Qwen/qwen2.5-7B; Qwen/qwen2.5-3B; Qwen/qwen2.5-1.5B; Qwen/qwen2.5-0.5B, etc. |
⭐QWEN2 | BF16/WINT8/FP8 | Qwen/Qwen/qwen2-72B; Qwen/Qwen/qwen2-7B; Qwen/qwen2-1.5B; Qwen/qwen2-0.5B; Qwen/QwQ-32, etc. |
⭐DEEPSEEK | BF16/WINT4 | unsloth/DeepSeek-V3.1-BF16; unsloth/DeepSeek-V3-0324-BF16; unsloth/DeepSeek-R1-BF16, etc. |
Multimodal Language Models
These models accept multi-modal inputs (e.g., images and text).
Models | DataType | Example HF Model |
---|---|---|
ERNIE-VL | BF16/WINT4/WINT8 | baidu/ERNIE-4.5-VL-424B-A47B-Paddle quick start best practice ; baidu/ERNIE-4.5-VL-28B-A3B-Paddle quick start best practice ; |
QWEN-VL | BF16/WINT4/FP8 | Qwen/Qwen2.5-VL-72B-Instruct; Qwen/Qwen2.5-VL-32B-Instruct; Qwen/Qwen2.5-VL-7B-Instruct; Qwen/Qwen2.5-VL-3B-Instruct |
More models are being supported. You can submit requests for new model support via Github Issues.