Deploy ERNIE-4.5-VL-424B-A47B Multimodal Model
This document explains how to deploy the ERNIE-4.5-VL multimodal model, which supports users to interact with the model using multimodal data (including reasoning capabilities). Before starting the deployment, please ensure that your hardware environment meets the following requirements:
- GPU Driver >= 535
- CUDA >= 12.3
- CUDNN >= 9.5
- Linux X86_64
- Python >= 3.10
- 80G A/H 8 GPUs
Refer to the Installation Guide for FastDeploy setup.
💡 Note: ERNIE multimodal models all support thinking mode, which can be enabled by setting
enable_thinking
when initiating a service request (see the example below)..
Prepare the Model
Specify --model baidu/ERNIE-4.5-VL-424B-A47B-Paddle
during deployment to automatically download the model from AIStudio with resumable downloads. You can also manually download the model from other sources. Note that FastDeploy requires Paddle-format models. For more details, see Supported Models.
Launch the Service
Execute the following command to start the service. For parameter configurations, refer to Parameter Guide.
💡 Note: Since the model parameter size is 424B-A47B, on an 80G * 8 GPU machine, specify
--quantization wint4
(wint8 is also supported).
python -m fastdeploy.entrypoints.openai.api_server \
--model baidu/ERNIE-4.5-VL-424B-A47B-Paddle \
--port 8180 --engine-worker-queue-port 8181 \
--cache-queue-port 8182 --metrics-port 8182 \
--tensor-parallel-size 8 \
--quantization wint4 \
--max-model-len 32768 \
--max-num-seqs 32 \
--enable-mm \
--mm-processor-kwargs '{"video_max_frames": 30}' \
--limit-mm-per-prompt '{"image": 10, "video": 3}' \
--reasoning-parser ernie-45-vl
Request the Service
After launching, the service is ready when the following logs appear:
api_server.py[line:91] Launching metrics service at http://0.0.0.0:8181/metrics
api_server.py[line:94] Launching chat completion service at http://0.0.0.0:8180/v1/chat/completions
api_server.py[line:97] Launching completion service at http://0.0.0.0:8180/v1/completions
INFO: Started server process [13909]
INFO: Waiting for application startup.
INFO: Application startup complete.
INFO: Uvicorn running on http://0.0.0.0:8180 (Press CTRL+C to quit)
Health Check
Verify service status (HTTP 200 indicates success):
curl -i http://0.0.0.0:8180/health
cURL Request
Send requests as follows:
curl -X POST "http://0.0.0.0:8180/v1/chat/completions" \
-H "Content-Type: application/json" \
-d '{
"messages": [
{"role": "user", "content": "Rewrite Li Bai's 'Quiet Night Thoughts' as a modern poem"}
]
}'
For image inputs:
curl -X POST "http://0.0.0.0:8180/v1/chat/completions" \
-H "Content-Type: application/json" \
-d '{
"messages": [
{"role": "user", "content": [
{"type":"image_url", "image_url": {"url":"https://paddlenlp.bj.bcebos.com/datasets/paddlemix/demo_images/example2.jpg"}},
{"type":"text", "text":"From which era does the artifact in the image originate?"}
]}
]
}'
For video inputs:
curl -X POST "http://0.0.0.0:8180/v1/chat/completions" \
-H "Content-Type: application/json" \
-d '{
"messages": [
{"role": "user", "content": [
{"type":"video_url", "video_url": {"url":"https://bj.bcebos.com/v1/paddlenlp/datasets/paddlemix/demo_video/example_video.mp4"}},
{"type":"text", "text":"How many apples are in the scene?"}
]}
]
}'
ERNIE-4.5-VL supports reasoning mode (enabled by default). Disable it as follows:
curl -X POST "http://0.0.0.0:8180/v1/chat/completions" \
-H "Content-Type: application/json" \
-d '{
"messages": [
{"role": "user", "content": [
{"type": "image_url", "image_url": {"url": "https://paddlenlp.bj.bcebos.com/datasets/paddlemix/demo_images/example2.jpg"}},
{"type": "text", "text": "From which era does the artifact in the image originate?"}
]}
],
"metadata": {"enable_thinking": false}
}'
Python Client (OpenAI-compatible API)
FastDeploy's API is OpenAI-compatible. You can also use Python for streaming requests:
import openai
host = "0.0.0.0"
port = "8180"
client = openai.Client(base_url=f"http://{host}:{port}/v1", api_key="null")
response = client.chat.completions.create(
model="null",
messages=[
{"role": "user", "content": [
{"type": "image_url", "image_url": {"url": "https://paddlenlp.bj.bcebos.com/datasets/paddlemix/demo_images/example2.jpg"}},
{"type": "text", "text": "From which era does the artifact in the image originate?"},
]},
],
stream=True,
)
for chunk in response:
if chunk.choices[0].delta:
print(chunk.choices[0].delta.content, end='')
print('\n')
Model Output
Example output with reasoning (reasoning content in reasoning_content
, response in content
):
{
"id": "chatcmpl-c4772bea-1950-4bf4-b5f8-3d3c044aab06",
"object": "chat.completion",
"created": 1750236617,
"model": "default",
"choices": [
{
"index": 0,
"message": {
"role": "assistant",
"content": "The artifact in the image ...",
"reasoning_content": "The user asks about ..."
},
"finish_reason": "stop"
}
],
"usage": {
"prompt_tokens": 1260,
"total_tokens": 2042,
"completion_tokens": 782
}
}
Example output without reasoning:
{
"id": "chatcmpl-4d508b96-0ea1-4430-98a6-ae569f74f25b",
"object": "chat.completion",
"created": 1750236495,
"model": "default",
"choices": [
{
"index": 0,
"message": {
"role": "assistant",
"content": "The artifact is a ...",
"reasoning_content": null
},
"finish_reason": "stop"
}
],
"usage": {
"prompt_tokens": 1265,
"total_tokens": 1407,
"completion_tokens": 142
}
}