PaddleFormers Backend
The PaddleFormers backend is FastDeploy's fallback mechanism, enabling rapid deployment of PaddleFormers-compatible models without waiting for native FastDeploy implementations.
Installation
Install PaddleFormers from source with paddlefleet (which automatically installs PaddlePaddle):
git clone https://github.com/PaddlePaddle/PaddleFormers.git
cd PaddleFormers
# Choose based on your CUDA version
# CUDA 12.6
pip install -e '.[paddlefleet]' --extra-index-url https://www.paddlepaddle.org.cn/packages/stable/cu126/
# CUDA 12.9
pip install -e '.[paddlefleet]' --extra-index-url https://www.paddlepaddle.org.cn/packages/stable/cu129/
# CUDA 13.0
pip install -e '.[paddlefleet]' --extra-index-url https://www.paddlepaddle.org.cn/packages/stable/cu130/
Note: If packages are not found, try adding
--index-url https://mirrors.ustc.edu.cn/pypi/simple
For more options, refer to the PaddleFormers Official Installation Guide.
Quick Start
Online Serving Mode
python -m fastdeploy.entrypoints.openai.api_server \
--model Qwen/Qwen3-4B \
--host 0.0.0.0 \
--port 8582 \
--engine-worker-queue-port 18582 \
--metrics-port 28582 \
--max-model-len 32768 \
--max-num-seqs 256 \
--kv-cache-ratio 0.75 \
--tensor-parallel-size 1 \
--gpu-memory-utilization 0.9 \
--model-impl paddleformers
Test:
curl -X POST "http://0.0.0.0:8582/v1/chat/completions" \
-H "Content-Type: application/json" \
-d '{"messages": [{"role": "user", "content": "Write a haiku about programming"}]}'
Offline Inference Mode
from fastdeploy import LLM, SamplingParams
llm = LLM(
model="Qwen/Qwen3-4B",
model_impl="paddleformers",
max_model_len=32768,
)
sampling_params = SamplingParams(max_tokens=4096, temperature=0.7)
messages = [[{"role": "user", "content": "Write a short poem about artificial intelligence"}]]
outputs = llm.chat(messages, sampling_params)
for output in outputs:
print(output.outputs.text)
Parameter Reference
| Parameter | Value | Description |
|---|---|---|
--model-impl |
auto |
Default. Prefers native implementation, falls back to PaddleFormers if unavailable |
--model-impl |
fastdeploy |
Uses native implementation only, raises error if unavailable |
--model-impl |
paddleformers |
Forces use of PaddleFormers backend |
Support Status
| Model Type | Status |
|---|---|
| Dense Text Generation (Qwen3/Llama3/ERNIE) | ✅ Supported |
| VLM (Vision-Language Models) | In Development |
| MOE (Mixture of Experts) | In Development |
| Optimization | Status |
|---|---|
| Tensor Parallel (TP) | ✅ |
| CUDA Graph | ✅ |
| Prefix Caching | ✅ |
| Chunked Prefill | ✅ |
| QKV/Gate+Up Fusion | ✅ |
Limitations
Not Yet Supported: Expert Parallel (EP), Quantized Inference (INT4/INT8), Speculative Decoding
Performance Note: The PaddleFormers backend outperforms native PaddleFormers but is slightly slower than native FastDeploy implementations.