# Install CINN using docker ### Step 1. Start a docker container Start a docker container based on upstream image. `nvidia-docker run --name $CONTAINER_NAME -it --net=host registry.baidubce.com/paddlepaddle/paddle:2.2.0-gpu-cuda11.2-cudnn8 /bin/bash` If you are using the latest version of docker, try: `docker run --gpus all --name $CONTAINER_NAME -it --net=host registry.baidubce.com/paddlepaddle/paddle:2.2.0-gpu-cuda11.2-cudnn8 /bin/bash` And notice that if your cuda version is not 11.2, replace the docker image to the corresponding paddle image with identical cuda version [here](https://registry.hub.docker.com/r/paddlepaddle/paddle). ### Step 2. Clone Source Code After entering the container, clone the source code from github. `git clone https://github.com/PaddlePaddle/CINN.git` ### Step 3. Build CINN and do ci test Build CINN and do ci test to verify correctness. `cd CINN` There are 5 kinds of ci test: 1. Test on CPU(X86) backends: `bash ./build.sh ci` 2. Test on CPU(X86) backends without mklcblas: `bash ./build.sh mklcblas_off ci` 3. Test on CPU(X86) backends without mkldnn: `bash ./build.sh mkldnn_off ci` 4. Test on NVGPU(cuda) backends with CUDNN library: `bash ./build.sh gpu_on ci` 5. Test on NVGPU(cuda) backends without CUDNN library: `bash ./build.sh gpu_on cudnn_off ci`